Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Microb Genom ; 9(11)2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38010338

RESUMEN

In response to the threat of increasing antimicrobial resistance, we must increase the amount of available high-quality genomic data gathered on antibiotic-resistant bacteria. To this end, we developed an integrated pipeline for high-throughput long-read sequencing, assembly, annotation and analysis of bacterial isolates and used it to generate a large genomic data set of carbapenemase-producing Enterobacterales (CPE) isolates collected in Spain. The set of 461 isolates were sequenced with a combination of both Illumina and Oxford Nanopore Technologies (ONT) DNA sequencing technologies in order to provide genomic context for chromosomal loci and, most importantly, structural resolution of plasmids, important determinants for transmission of antimicrobial resistance. We developed an informatics pipeline called Assembly and Annotation of Carbapenem-Resistant Enterobacteriaceae (AACRE) for the full assembly and annotation of the bacterial genomes and their complement of plasmids. To explore the resulting genomic data set, we developed a new database called inCREDBle that not only stores the genomic data, but provides unique ways to filter and compare data, enabling comparative genomic analyses at the level of chromosomes, plasmids and individual genes. We identified a new sequence type, ST5000, and discovered a genomic locus unique to ST15 that may be linked to its increased spread in the population. In addition to our major objective of generating a large regional data set, we took the opportunity to compare the effects of sample quality and sequencing methods, including R9 versus R10 nanopore chemistry, on genome assembly and annotation quality. We conclude that converting short-read and hybrid microbial sequencing and assembly workflows to the latest nanopore chemistry will further reduce processing time and cost, truly enabling the routine monitoring of resistance transmission patterns at the resolution of complete chromosomes and plasmids.


Asunto(s)
Enterobacteriaceae Resistentes a los Carbapenémicos , Carbapenémicos , Carbapenémicos/farmacología , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Flujo de Trabajo , Genómica/métodos , Antibacterianos/farmacología
2.
F1000Res ; 9: 1336, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-34745570

RESUMEN

The COVID-19 pandemic has posed and is continuously posing enormous societal and health challenges worldwide. The research community has mobilized to develop novel projects to find a cure or a vaccine, as well as to contribute to mass testing, which has been a critical measure to contain the infection in several countries. Through this article, we share our experiences and learnings as a group of volunteers at the Centre for Genomic Regulation (CRG) in Barcelona, Spain. As members of the ORFEU project, an initiative by the Government of Catalonia to achieve mass testing of people at risk and contain the epidemic in Spain, we share our motivations, challenges and the key lessons learnt, which we feel will help better prepare the global society to address similar situations in the future.


Asunto(s)
COVID-19 , Prueba de COVID-19 , Genómica , Humanos , Pandemias , SARS-CoV-2 , Voluntarios
3.
Bioinformatics ; 35(5): 737-742, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30137223

RESUMEN

MOTIVATION: DNA methylation is essential for normal embryogenesis and development in mammals and can be captured at single base pair resolution by whole genome bisulfite sequencing (WGBS). Current available analysis tools are becoming rapidly outdated as they lack sensible functionality and efficiency to handle large amounts of data now commonly created. RESULTS: We developed gemBS, a fast high-throughput bioinformatics pipeline specifically designed for large scale BS-Seq analysis that combines a high performance BS-mapper (GEM3) and a variant caller specifically for BS-Seq data (BScall). gemBS provides genotype information and methylation estimates for all genomic cytosines in different contexts (CpG and non-CpG) and a set of quality reports for comprehensive and reproducible analysis. gemBS is highly modular and can be easily automated, while producing robust and accurate results. AVAILABILITY AND IMPLEMENTATION: gemBS is released under the GNU GPLv3+ license. Source code and documentation are freely available from www.statgen.cat/gemBS. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Metilación de ADN , Secuenciación de Nucleótidos de Alto Rendimiento , Animales , Análisis de Secuencia de ADN , Programas Informáticos , Sulfitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...