Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Curr Res Microb Sci ; 4: 100194, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37346179

RESUMEN

Harmful Algal Blooms (HABs) have caused damage to the marine environment in Isla San Pedro in the Gulf of Corcovado, Chile. While rising water temperature and artificial eutrophication are the most discussed topics as a cause, marine bacteria is a recent attractive parameter as an algal bloom driver. This study monitored algal and bacterial compositions in the water of Isla San Pedro for one year using microscopy and 16S rRNA metabarcoding analysis, along with physicochemical parameters. The collected data were analyzed with various statistical tools to understand how the particle-associated bacteria (PA) and the free-living (FL) bacteria were possibly involved in algal blooms. Both FL and PA fractions maintained a stable bacterial composition: the FL fraction was dominated by Proteobacteria (α-Proteobacteria and γ-Proteobacteria), and Cyanobacteria dominated the PA fraction. The two fractions contained equivalent bacterial taxonomic richness (c.a. 8,000 Operational Taxonomic Units) and shared more than 50% of OTU; however, roughly 20% was exclusive to each fraction. The four most abundant algal genera in the Isla San Pedro water were Thalassiosira, Skeletonema, Chaetoceros, and Pseudo-nitzchia. Statistical analysis identified that the bacterial species Polycyclovorans algicola was correlated with Pseudo-nitzschia spp., and our monitoring data recorded a sudden increase of particle-associated Polycyclovorans algicola shortly after the increase of Pseudo-nitzschia, suggesting that P. algicola may have regression effect on Pseudo-nitzschia spp. The study also investigated the physicochemical parameter effect on algal-bacterial interactions. Oxygen concentration and chlorophyll-a showed a strong correlation with both FL and PA bacteria despite their assemblage differences, suggesting that the two groups had different mechanisms for interacting with algal species.

2.
Artículo en Inglés | MEDLINE | ID: mdl-33092111

RESUMEN

Harmful algae blooms (HABs) cause acute effects on marine ecosystems due to their production of endogenous toxins or their enormous biomass, leading to significant impacts on local economies and public health. Although HAB monitoring has been intensively performed at spatiotemporal scales in coastal areas of the world over the last decades, procedures have not yet been standardized. HAB monitoring procedures are complicated and consist of many methodologies, including physical, chemical, and biological water sample measurements. Each monitoring program currently uses different combinations of methodologies depending on site specific purposes, and many prior programs refer to the procedures in quotations. HAB monitoring programs in Chile have adopted the traditional microscopic and toxin analyses but not molecular biology and bacterial assemblage approaches. Here we select and optimize the HAB monitoring methodologies suitable for Chilean geography, emphasizing on metabarcoding analyses accompanied by the classical tools with considerations including cost, materials and instrument availability, and easiness and efficiency of performance. We present results from a pilot study using the standardized stepwise protocols, demonstrating feasibility and plausibility for sampling and analysis for the HAB monitoring. Such specific instructions in the standardized protocol are critical obtaining quality data under various research environments involving multiple stations, different analysts, various time-points, and long HAB monitoring duration.


Asunto(s)
Acuicultura , Ecosistema , Explotaciones Pesqueras , Floraciones de Algas Nocivas , Chile , Proyectos Piloto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...