Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 41
1.
J Anim Breed Genet ; 141(2): 153-162, 2024 Mar.
Article En | MEDLINE | ID: mdl-37888514

Crossbreeding plays a pivotal role within pig breeding programmes, aiming to maximize heterosis and improve reproductive traits in crossbred maternal lines. Nevertheless, there is evidence indicating that the performance of reciprocal crosses between two genetic lines might exhibit variability. These variations in performance can be attributed to differences in the correlations between gametic effects, acting as either sire or dam, within purebred and crossbred populations. To address this issue, we propose a multivariate gametic model that incorporates up to four correlated gametic effects for each parental population. The model is employed on a data set comprising litter size data (total number of piglets born-TNB- and number of piglets born alive-NBA-) derived from a reciprocal cross involving two Iberian pig populations: Entrepelado and Retinto. The data set comprises 6933 records from 1564 purebred Entrepelado (EE) sows, 4995 records from 1015 Entrepelado × Retinto (ER) crosses, 2977 records from 756 Retinto × Entrepelado (RE) crosses and 7497 records from 1577 purebred Retinto (RR) sows. The data set is further supplemented by a pedigree encompassing 6007 individual-sire-dam entries. The statistical model also included the order of parity (with six levels), the breed of the service sire (five levels) and the herd-year-season effects (141 levels). Additionally, the model integrates random dominant and permanent environmental sow effects. The analysis employed a Bayesian approach, and the results revealed all the posterior estimates of the gametic correlations to be positive. The range of the posterior mean estimates of the correlations varied across different gametic effects and traits, with a range between 0.04 (gametic correlation between the paternal effects for purebred and the maternal for crossbred in Retinto) and 0.53 (gametic correlation between the paternal effects for purebred and the paternal for crossbred in Entrepelado). Furthermore, the posterior mean variance estimates of the maternal gametic effects were consistently surpassed those for paternal effects within all four populations. The results suggest the possible influence of imprinting effects on the genetic control of litter size, and underscore the importance of incorporating crossbred data into the breeding value predictions for purebred individuals.


Breeding , Hybridization, Genetic , Humans , Pregnancy , Swine/genetics , Animals , Female , Bayes Theorem , Reproduction , Hybrid Vigor , Crosses, Genetic
2.
Genes (Basel) ; 14(10)2023 10 15.
Article En | MEDLINE | ID: mdl-37895290

Inbreeding depression is expected to be more pronounced in fitness-related traits, such as pig litter size. Recent studies have suggested that the genetic determinism of inbreeding depression may be heterogeneous across the genome. Therefore, the objective of this study was to conduct a genomic scan of the whole pig autosomal genome to detect the genomic regions that control inbreeding depression for litter size in two varieties of Iberian pigs (Entrepelado and Retinto). The datasets consisted of 2069 (338 sows) and 2028 (327 sows) records of litter size (Total Number Born and Number Born Alive) for the Entrepelado and Retinto varieties. All sows were genotyped using the Geneseek GGP PorcineHD 70 K chip. We employed the Unfavorable Haplotype Finder software to extract runs of homozygosity (ROHs) and conducted a mixed-model analysis to identify highly significant differences between homozygous and heterozygous sows for each specific ROH. A total of eight genomic regions located on SSC2, SSC5, SSC7, SSC8, and SSC13 were significantly associated with inbreeding depression, housing some relevant genes such as FSHR, LHCGR, CORIN, AQP6, and CEP120.


Inbreeding Depression , Pregnancy , Swine/genetics , Animals , Female , Litter Size/genetics , Inbreeding Depression/genetics , Genotype , Genome , Genomics
3.
BMC Genomics ; 24(1): 383, 2023 Jul 08.
Article En | MEDLINE | ID: mdl-37422635

BACKGROUND: Biological mechanisms affecting gametogenesis, embryo development and postnatal viability have the potential to alter Mendelian inheritance expectations resulting in observable transmission ratio distortion (TRD). Although the discovery of TRD cases have been around for a long time, the current widespread and growing use of DNA technologies in the livestock industry provides a valuable resource of large genomic data with parent-offspring genotyped trios, enabling the implementation of TRD approach. In this research, the objective is to investigate TRD using SNP-by-SNP and sliding windows approaches on 441,802 genotyped Holstein cattle and 132,991 (or 47,910 phased) autosomal SNPs. RESULTS: The TRD was characterized using allelic and genotypic parameterizations. Across the whole genome a total of 604 chromosomal regions showed strong significant TRD. Most (85%) of the regions presented an allelic TRD pattern with an under-representation (reduced viability) of carrier (heterozygous) offspring or with the complete or quasi-complete absence (lethality) for homozygous individuals. On the other hand, the remaining regions with genotypic TRD patterns exhibited the classical recessive inheritance or either an excess or deficiency of heterozygote offspring. Among them, the number of most relevant novel regions with strong allelic and recessive TRD patterns were 10 and 5, respectively. In addition, functional analyses revealed candidate genes regulating key biological processes associated with embryonic development and survival, DNA repair and meiotic processes, among others, providing additional biological evidence of TRD findings. CONCLUSIONS: Our results revealed the importance of implementing different TRD parameterizations to capture all types of distortions and to determine the corresponding inheritance pattern. Novel candidate genomic regions containing lethal alleles and genes with functional and biological consequences on fertility and pre- and post-natal viability were also identified, providing opportunities for improving breeding success in cattle.


Embryonic Development , Inheritance Patterns , Animals , Cattle/genetics , Genotype , Heterozygote , Alleles
4.
Animals (Basel) ; 13(10)2023 May 16.
Article En | MEDLINE | ID: mdl-37238078

INGA FOOD, S.A. initiated a crossbreeding program between two Iberian pig varieties, Retinto (R) and Entrepelado (E), with the goal of producing a hybrid sow (F1). Several studies have been conducted to evaluate its productive performance, and these studies have revealed differences in litter size between the two reciprocal crosses, suggesting the presence of genomic imprinting effects. To further investigate these effects, this study introduces a multivariate gametic model designed to estimate gametic correlations between paternal and maternal effects originating from both genetic backgrounds involved in the reciprocal crosses. The dataset consisted of 1258 records (the total number born-TNB and the number born alive-NBA) from 203 crossbred dams for the Entrepelado (sire) × Retinto (dam) cross and 700 records from 125 crossbred dams for the Retinto (sire) × Entrepelado (dam) cross. All animals were genotyped using the GeneSeek® GPP Porcine 70 K HDchip (Illumina Inc., San Diego, CA, USA). The results indicated that the posterior distribution of the gametic correlation between paternal and maternal effects was distinctly different between the two populations. Specifically, in the Retinto population, the gametic correlation showed a positive skew with posterior probabilities of 0.78 for the TNB and 0.80 for the NBA. On the other hand, the Entrepelado population showed a posterior probability of a positive gametic correlation between paternal and maternal effects of approximately 0.50. The differences in the shape of the posterior distribution of the gametic correlations between paternal and maternal effects observed in the two varieties may account for the distinct performance outcomes observed in the reciprocal crosses.

5.
Front Genet ; 14: 1132796, 2023.
Article En | MEDLINE | ID: mdl-37091801

Several biological mechanisms affecting the sperm and ova fertility and viability at developmental stages of the reproductive cycle resulted in observable transmission ratio distortion (i.e., deviation from Mendelian expectations). Gene-by-gene interactions (or epistasis) could also potentially cause specific transmission ratio distortion patterns at different loci as unfavorable allelic combinations are under-represented, exhibiting deviation from Mendelian proportions. Here, we aimed to detect pairs of loci with epistatic transmission ratio distortion using 283,817 parent-offspring genotyped trios (sire-dam-offspring) of Holstein cattle. Allelic and genotypic parameterization for epistatic transmission ratio distortion were developed and implemented to scan the whole genome. Different epistatic transmission ratio distortion patterns were observed. Using genotypic models, 7, 19 and 6 pairs of genomic regions were found with decisive evidence with additive-by-additive, additive-by-dominance/dominance-by-additive and dominance-by-dominance effects, respectively. Using the allelic transmission ratio distortion model, more insight was gained in understanding the penetrance of single-locus distortions, revealing 17 pairs of SNPs. Scanning for the depletion of individuals carrying pairs of homozygous genotypes for unlinked loci, revealed 56 pairs of SNPs with recessive epistatic transmission ratio distortion patterns. The maximum number of expected homozygous offspring, with none of them observed, was 23. Finally, in this study, we identified candidate genomic regions harboring epistatic interactions with potential biological implications in economically important traits, such as reproduction.

6.
Animals (Basel) ; 13(7)2023 Mar 29.
Article En | MEDLINE | ID: mdl-37048455

Feeding linseed to dairy cows results in milk fat depression (MFD), but there is a wide range of sensitivity among cows. The objectives of this study were to identify target genes containing SNP that may play a key role in the regulation of milk fat synthesis in cows resistant or sensitive to MFD. Four cows were selected from a dairy farm after a switch from a control diet to a linseed-rich diet; two were resistant to MFD with a high milk fat content in the control (4.06%) and linseed-rich (3.90%) diets; and two were sensitive to MFD with the milk fat content decreasing after the change from the control (3.87%) to linseed-rich (2.52%) diets. Transcriptome and SNP discovery analyses were performed using RNA-sequencing technology. There was a large number of differentially expressed genes in the control (n = 1316) and linseed-rich (n = 1888) diets. Of these, 15 genes were detected as key gene regulators and harboring SNP in the linseed-rich diet. The selected genes MTOR, PDPK1, EREG, NOTCH1, ZNF217 and TGFB3 may form a network with a principal axis PI3K/Akt/MTOR/SREBP1 involved in milk fat synthesis and in the response to diets that induced MFD. These 15 genes are novel candidate genes to be involved in the resistance or sensitivity of dairy cows to milk fat depression.

7.
Sci Rep ; 12(1): 22314, 2022 12 24.
Article En | MEDLINE | ID: mdl-36566278

In the dairy industry, mate allocation is dependent on the producer's breeding goals and the parents' breeding values. The probability of pregnancy differs among sire-dam combinations, and the compatibility of a pair may vary due to the combination of gametic haplotypes. Under the hypothesis that incomplete incompatibility would reduce the odds of fertilization, and complete incompatibility would lead to a non-fertilizing or lethal combination, deviation from Mendelian inheritance expectations would be observed for incompatible pairs. By adding an interaction to a transmission ratio distortion (TRD) model, which detects departure from the Mendelian expectations, genomic regions linked to gametic incompatibility can be identified. This study aimed to determine the genetic background of gametic incompatibility in Holstein cattle. A total of 283,817 genotyped Holstein trios were used in a TRD analysis, resulting in 422 significant regions, which contained 2075 positional genes further investigated for network, overrepresentation, and guilt-by-association analyses. The identified biological pathways were associated with immunology and cellular communication and a total of 16 functional candidate genes were identified. Further investigation of gametic incompatibility will provide opportunities to improve mate allocation for the dairy cattle industry.


Genome , Germ Cells , Pregnancy , Female , Animals , Cattle , Genotype , Haplotypes , Fertilization/genetics
8.
Genes (Basel) ; 13(12)2022 12 09.
Article En | MEDLINE | ID: mdl-36553588

Transmission ratio distortion (TRD), or significant deviations from Mendelian inheritance, is a well-studied phenomenon on autosomal chromosomes, but has not yet received attention on sex chromosomes. TRD was analyzed on 3832 heterosomal single nucleotide polymorphisms (SNPs) and 400 pseudoautosomal SNPs spanning the length of the X-chromosome using 436,651 genotyped Holstein cattle. On the pseudoautosomal region, an opposite sire-TRD pattern between male and female offspring was identified for 149 SNPs. This finding revealed unique SNPs linked to a specific-sex (Y- or X-) chromosome and describes the accumulation of recombination events across the pseudoautosomal region. On the heterosomal region, 13 SNPs and 69 haplotype windows were identified with dam-TRD. Functional analyses for TRD regions highlighted relevant biological functions responsible to regulate spermatogenesis, development of Sertoli cells, homeostasis of endometrium tissue and embryonic development. This study uncovered the prevalence of different TRD patterns across both heterosomal and pseudoautosomal regions of the X-chromosome and revealed functional candidate genes for bovine reproduction.


Sex Chromosomes , X Chromosome , Animals , Male , Cattle/genetics , Female , X Chromosome/genetics , Genotype , Fertility/genetics , Recombination, Genetic
9.
J Anim Breed Genet ; 139(3): 271-280, 2022 May.
Article En | MEDLINE | ID: mdl-34894369

Regular changes in the environment and biological responses generate seasonal patterns in the reproduction in small ruminants. Breeding seasonality is a significant constraint impacting efficiency of lamb production. However, seasonality-related traits present a special peculiarity from a statistical point of view being circular data (day of year running 1:365). Recently, circular mixed models have been developed on the basis of the von Mises distribution and were applied to analyse lambing day distribution recorded from five major Canadian sheep breeds (Rideau Arcott, Romanov, Dorset, Suffolk and Polypay). In a simulation study, the linear model was not able to capture the variance components simulated under the circular paradigm; however, the von Mises model evidenced its ability to infer the variance components of simulated circular records. Using real data of sheep, mostly negligible variances were observed for additive genetic effect when using a linear model on circular data values. In contrast, when using the von Mises model, genetic variances were different across breeds, and it raises the possibility to delay the peak of reproduction and to change the seasonality of the ewes. However, a large variance was captured by flock-year effects emphasizing the strong influence of management in lambing seasons for Canadian sheep populations. Finally, the results suggest the potential of using the von Mises model to analyse circular data, and further research is needed for better understand the complexity of this trait and the von Mises models.


Red Meat , Reproduction , Animals , Canada , Female , Phenotype , Reproduction/genetics , Seasons , Sheep/genetics
10.
Anim Genet ; 52(5): 779-781, 2021 Oct.
Article En | MEDLINE | ID: mdl-34189737

Transmission ratio distortion (TRD) is the preferential transmission of one specific allele to offspring at the expense of the other. The existence of TRD is mostly explained by the segregation of genetic variants with deleterious effects on the developmental processes that go from the formation of gametes to fecundation and birth. A few years ago, a statistical methodology was implemented in order to detect TRD signals on a genome-wide scale as a first step toward uncovering the biological basis of TRD and reproductive success in domestic species. In the current work, we have analyzed the impact of SNP calling quality on the detection of TRD signals in a population of Murciano-Granadina goats. Seventeen bucks and their offspring (N = 288) were typed with the Goat SNP50 BeadChip, whereas the genotypes of the dams were lacking. Performance of a genome-wide scan revealed the existence of 36 SNPs showing significant evidence of TRD. When we calculated GenTrain scores for each of the SNPs, we observed that 25 SNPs showed scores below 0.8. The allele frequencies of these SNPs in the offspring were not correlated with the allele frequencies estimated in the dams with statistical methods, providing evidence that flawed SNP calling quality might lead to the detection of spurious TRD signals. We conclude that, when performing TRD scans, the GenTrain scores of markers should be taken into account to discriminate SNPs that are truly under TRD from those yielding spurious signals owing to technical problems.


Goats/genetics , Inheritance Patterns , Models, Genetic , Alleles , Animals , Gene Frequency , Genetic Markers , Genotype , Polymorphism, Single Nucleotide
11.
Genes (Basel) ; 13(1)2021 12 22.
Article En | MEDLINE | ID: mdl-35052355

INGA FOOD S. A., as a Spanish company that produces and commercializes fattened pigs, has produced a hybrid Iberian sow called CASTÚA by crossing the Retinto and Entrepelado varieties. The selection of the parental populations is based on selection criteria calculated from purebred information, under the assumption that the genetic correlation between purebred and crossbred performance is high; however, these correlations can be less than one because of a GxE interaction or the presence of non-additive genetic effects. This study estimated the additive and dominance variances of the purebred and crossbred populations for litter size, and calculated the additive genetic correlations between the purebred and crossbred performances. The dataset consisted of 2030 litters from the Entrepelado population, 1977 litters from the Retinto population, and 1958 litters from the crossbred population. The individuals were genotyped with a GeneSeek® GGP Porcine70K HDchip. The model of analysis was a 'biological' multivariate mixed model that included additive and dominance SNP effects. The estimates of the additive genotypic variance for the total number born (TNB) were 0.248, 0.282 and 0.546 for the Entrepelado, Retinto and Crossbred populations, respectively. The estimates of the dominance genotypic variances were 0.177, 0.172 and 0.262 for the Entrepelado, Retinto and Crossbred populations. The results for the number born alive (NBA) were similar. The genetic correlations between the purebred and crossbred performance for TNB and NBA-between the brackets-were 0.663 in the Entrepelado and 0.881 in Retinto poplulations. After backsolving to obtain estimates of the SNP effects, the additive genetic variance associated with genomic regions containing 30 SNPs was estimated, and we identified four genomic regions that each explained > 2% of the additive genetic variance in chromosomes (SSC) 6, 8 and 12: one region in SSC6, two regions in SSC8, and one region in SSC12.


Genome/genetics , Litter Size/genetics , Polymorphism, Single Nucleotide/genetics , Animals , Crosses, Genetic , Genomics/methods , Genotype , Hybridization, Genetic/genetics , Models, Genetic , Phenotype , Swine
12.
Sci Rep ; 10(1): 21190, 2020 12 03.
Article En | MEDLINE | ID: mdl-33273670

Perinatal piglet mortality is an important factor in pig production from economic and animal welfare perspectives; however, the statistical analysis of mortality is difficult because of its categorical nature. Recent studies have suggested that a binomial model for the survival of each specific piglet with a logit approach is appropriate and that recursive relationships between traits are useful for taking into account non-genetic relationships with other traits. In this study, the recursive binomial model is expanded in two directions: (1) the recursive phenotypic dependence among traits is allowed to vary among groups of individuals or crosses, and (2) the binomial distribution is replaced by the multiplicative binomial distribution to account for over or underdispersion. In this study, five recursive multiplicative binomial models were used to obtain estimates of the Dickerson crossbreeding parameters in a diallel cross among three varieties of Iberian pigs [Entrepelado (EE), Torbiscal (TT), and Retinto (RR)]. Records (10,255) from 2110 sows were distributed as follows: EE (433 records, 100 sows), ER (2336, 527), ET (942, 177), RE (806, 196), RR (870, 175), RT (2450, 488), TE (193, 36), TR (1993, 359), and TT (232, 68). Average litter size [Total Number Born (TNB)] and number of stillborns (SB) were 8.46 ± 2.27 and 0.25 ± 0.72, respectively. The overdispersion was evident with all models. The model with the best fit included a linear recursive relationship between TNB and the logit of [Formula: see text] of the multiplicative binomial distribution, and it implies that piglet mortality increases with litter size. Estimates of direct effects showed small differences among populations. The analysis of maternal effects indicated that the dams whose mothers were EE had a larger SB, while dams with RR mothers reduced the probability of born dead. The posterior estimates of heterosis suggested a reduction in SB when the sow is crosbred. The multiplicative binomial distribution provides a useful alternative to the binomial distribution when there is overdispersion in the data. Recursive models can be used for modeling non-genetic relationships between traits, even if the phenotypic dependency between traits varies among environments or groups of individuals. Piglet perinatal mortality increased with TNB and is reduced by maternal heterosis.


Alleles , Hybridization, Genetic , Models, Statistical , Animals , Humans , Perinatal Mortality , Phenotype , Species Specificity , Stillbirth , Swine
13.
Genet Sel Evol ; 52(1): 62, 2020 Oct 20.
Article En | MEDLINE | ID: mdl-33081691

BACKGROUND: Inbreeding is caused by mating between related individuals and is associated with reduced fitness and performance (inbreeding depression). Several studies have detected heterogeneity in inbreeding depression among founder individuals. Recently, a procedure was developed to predict hidden inbreeding depression load that is associated with founders using the Mendelian sampling of non-founders. The objectives of this study were to: (1) analyse the population structure and general inbreeding, and (2) test this recent approach for predicting hidden inbreeding depression load for four morphological traits and two morphology defects in the Pura Raza Española (PRE) horse breed. RESULTS: The regression coefficients that were calculated between trait performances and inbreeding coefficients demonstrated the existence of inbreeding depression. In total, 58,772,533 partial inbreeding coefficients (Fij) were estimated for the whole PRE population (328,706 horses). We selected the descendants of horses with a Fij ≥ 6.25% that contributed to at least four offspring and for which morphological traits were measured for the subsequent analysis of inbreeding depression load (639 horses). A pedigree was generated with the last five generations (5026 animals) used as the reference population (average inbreeding coefficient of 8.39% and average relatedness coefficient of 10.76%). Heritability estimates ranged from 0.08 (cresty neck) to 0.80 (height at withers), whereas inbreeding depression load ratios ranged from 0.01 (knock knee) to 0.40 (length of shoulder), for an inbreeding coefficient of 10%. Most of the correlations between additive and inbreeding depression load genetic values and correlations between inbreeding depression load genetic values for the different traits were positive or near 0. CONCLUSIONS: Although the average inbreeding depression loads presented negative values, a certain percentage of the animals showed neutral or even positive values. Thus, high levels of inbreeding do not always lead to a decrease in mean phenotypic value or an increase in morphological defects. Hence, individual inbreeding depression loads could be used as a tool to select the most appropriate breeding animals. The possibility of selecting horses that have a high genetic value and are more resistant to the deleterious effects of inbreeding should help improve selection outcomes.


Horses/genetics , Inbreeding Depression , Quantitative Trait, Heritable , Animals , Genetic Fitness , Genetic Load , Horses/anatomy & histology , Pedigree
14.
DNA Res ; 27(5)2020 Dec 03.
Article En | MEDLINE | ID: mdl-32931559

Transmission Ratio Distortion (TRD), the uneven transmission of an allele from a parent to its offspring, can be caused by allelic differences affecting gametogenesis, fertilization or embryogenesis. However, TRD remains vaguely studied at a genomic scale. We sequenced the diploid and haploid genomes of three boars from leukocytes and spermatozoa at 50x to shed light into the genetic basis of spermatogenesis-caused Allelic Ratio Distortion (ARD). We first developed a Binomial model to identify ARD by simultaneously analysing all three males. This led to the identification of 55 ARD SNPs, most of which were animal-specific. We then evaluated ARD individually within each pig by a Fisher's exact test and identified two shared genes (TOP3A and UNC5B) and four shared genomic regions harbouring distinct ARD SNPs in the three boars. The shared genomic regions contained candidate genes with functions related to spermatogenesis including AK7, ARID4B, BDKRB2, GSK3B, NID1, NSMCE1, PALB2, VRK1 and ZC3H13. Using the Fisher's test, we also identified 378 genes containing variants with protein damaging potential in at least one boar, a high proportion of which, including FAM120B, TDRD15, JAM2 or AOX4 among others, are associated to spermatogenesis. Overall, our results show that sperm is subjected to ARD with variants associated to a wide variety of genes involved in different stages of spermatogenesis.


Alleles , Inheritance Patterns , Models, Genetic , Spermatogenesis , Spermatozoa , Sus scrofa/genetics , Animals , Male , Polymorphism, Single Nucleotide , Whole Genome Sequencing
15.
Genes (Basel) ; 11(9)2020 09 05.
Article En | MEDLINE | ID: mdl-32899475

Transmission ratio distortion (TRD) is defined as the allele transmission deviation from the heterozygous parent to the offspring from the expected Mendelian genotypic frequencies. Although TRD can be a confounding factor in genetic mapping studies, this phenomenon remains mostly unknown in pigs, particularly in traditional breeds (i.e., the Iberian pig). We aimed to describe the maternal TRD prevalence and its genomic distribution in two Iberian varieties. Genotypes from a total of 247 families (dam and offspring) of Entrepelado (n = 129) and Retinto (n = 118) Iberian varieties were analyzed. The offspring were sired by both ungenotyped purebred Retinto and Entrepelado Iberian boars, regardless of the dam variety used. After quality control, 16,246 single-nucleotide polymorphisms (SNPs) in the Entrepelado variety and 9744 SNPs in the Retinto variety were analyzed. Maternal TRD was evaluated by a likelihood ratio test under SNP-by-SNP, adapting a previous model solved by Bayesian inference. Results provided 68 maternal TRD loci (TRDLs) in the Entrepelado variety and 24 in the Retinto variety (q < 0.05), with mostly negative TRD values, increasing the transmission of the minor allele. In addition, both varieties shared ten common TRDLs. No strong evidence of biological effects was found in genes with TRDLs. However, some biological processes could be affected by TRDLs, such as embryogenesis at different levels and lipid metabolism. These findings could provide useful insight into the genetic mechanisms to improve the swine industry, particularly in traditional breeds.


Chromosomes, Mammalian/genetics , Genetic Markers , Genome , Inheritance Patterns/genetics , Maternal Inheritance/genetics , Polymorphism, Single Nucleotide , Swine/genetics , Animals , Bayes Theorem , Female , Male , Swine/classification
16.
Genet Sel Evol ; 51(1): 78, 2019 Dec 26.
Article En | MEDLINE | ID: mdl-31878872

BACKGROUND: Inbreeding is caused by mating between related individuals and its most common consequence is inbreeding depression. Several studies have detected heterogeneity in inbreeding depression among founder individuals, and recently a procedure for predicting hidden inbreeding depression loads associated with founders and the Mendelian sampling of non-founders has been developed. The objectives of our study were to expand this model to predict the inbreeding loads for all individuals in the pedigree and to estimate the covariance between the inbreeding loads and the additive genetic effects for the trait of interest. We tested the proposed approach with simulated data and with two datasets of records on weaning weight from the Spanish Pirenaica and Rubia Gallega beef cattle breeds. RESULTS: The posterior estimates of the variance components with the simulated datasets did not differ significantly from the simulation parameters. In addition, the correlation between the predicted and simulated inbreeding loads were always positive and ranged from 0.27 to 0.82. The beef cattle datasets comprised 35,126 and 75,194 records on weights between 170 and 250 days of age, and pedigrees of 308,836 and 384,434 individual-sire-dam entries for the Pirenaica and Rubia Gallega breeds, respectively. The posterior mean estimates of the variance of inbreeding depression loads were 29,967.8 and 28,222.4 for the Pirenaica and Rubia Gallega breeds, respectively. They were larger than those of the additive variance (695.0 and 439.8 for Pirenaica and Rubia Gallega, respectively), because they should be understood as the variance of the inbreeding depression achieved by a fully inbred (100%) descendant. Therefore, the inbreeding loads have to be rescaled for smaller inbreeding coefficients. In addition, a strong negative correlation (- 0.43 ± 0.10) between additive effects and inbreeding loads was detected in the Pirenaica, but not in the Rubia Gallega breed. CONCLUSIONS: The results of the simulation study confirmed the ability of the proposed procedure to predict inbreeding depression loads for all individuals in the populations. Furthermore, the results obtained from the two real datasets confirmed the variability in the inbreeding depression loads in both breeds and suggested a negative correlation of the inbreeding loads with the additive genetic effects in the Pirenaica breed.


Inbreeding Depression , Animals , Cattle , Models, Genetic , Multivariate Analysis , Pedigree
17.
J Anim Sci ; 97(5): 1979-1986, 2019 Apr 29.
Article En | MEDLINE | ID: mdl-30869129

Individual-specific hidden inbreeding depression load (IDL) can be accounted for in livestock populations by appropriate best linear unbiased prediction approaches. This genetic effect has a recessive pattern and reveals when inherited in terms of identity-by-descent. Nevertheless, IDL inherits as a pure additive genetic background and can be selected using standard breeding values. The main target of this research was to evaluate IDL for litter size in 2 Iberian pig varieties (Entrepelado and Retinto) from a commercial breeding-stock. Analyses were performed on the total number of piglets born (both alive and dead) and used data from 3,200 (8.02 ± 0.04 piglets/litter) Entrepelado and 4,744 Retinto litters (8.40 ± 0.03 piglets/litter). Almost 50% of Entrepelado sows were inbred (1.7% to 25.0%), whereas this percentage reduced to 37.4% in the Retinto variety (0.2% to 25.0%). The analytical model was solved by Bayesian inference and accounted for 2 systematic effects (sow age and breed/variety of the artificial insemination boar), 2 permanent environmental effects (herd-year-season and sow), and 2 genetic effects (IDL and infinitesimal additive). In terms of posterior means (PM), additive genetic and IDL variances were similar in the Entrepelado variety (PM, 0.68 vs. 0.76 piglets2, respectively) and their 95% credibility intervals (95CI) overlapped, although without including zero (0.38 to 0.94 vs. 0.15 to 1.31 piglets2, respectively). The same pattern revealed in the Retinto variety, with IDL variance (PM, 0.41 piglets2; 95CI, 0.07 to 0.88 piglets2) slightly larger than the additive genetic variance (PM, 0.37 piglets2; 95CI, 0.16 to 0.59 piglets2). The relevance of IDL was also checked by a Bayes factor and the deviance information criterion, the model including this effect being clearly favored in both cases. Although the analysis assumed null genetic covariance between IDL and infinitesimal additive effects, a moderate negative correlation (-0.31) was suggested when plotting the PM of breeding values in the Entrepelado variety; a negative genetic trend for IDL was also revealed in this Iberian pig variety (-0.25 piglets for 100% inbred offspring of individuals born in 2014), whereas no trend was detected in Retinto breeding-stock. Those were the first estimates of IDL in a commercial livestock population, they giving evidence of a relevant genetic background with potential consequences on the reproductive performance of Iberian sows.


Inbreeding Depression/genetics , Litter Size/genetics , Reproduction , Swine/genetics , Animals , Bayes Theorem , Breeding , Female , Male , Pregnancy , Swine/physiology
18.
BMC Genomics ; 20(1): 170, 2019 Mar 04.
Article En | MEDLINE | ID: mdl-30832586

BACKGROUND: Intramuscular fat (IMF) content and composition have a strong impact on the nutritional and organoleptic properties of porcine meat. The goal of the current work was to compare the patterns of gene expression and the genetic determinism of IMF traits in the porcine gluteus medius (GM) and longissimus dorsi (LD) muscles. RESULTS: A comparative analysis of the mRNA expression profiles of the pig GM and LD muscles in 16 Duroc pigs with available microarray mRNA expression measurements revealed the existence of 106 differentially expressed probes (fold-change > 1.5 and q-value < 0.05). Amongst the genes displaying the most significant differential expression, several loci belonging to the Hox transcription factor family were either upregulated (HOXA9, HOXA10, HOXB6, HOXB7 and TBX1) or downregulated (ARX) in the GM muscle. Differences in the expression of genes with key roles in carbohydrate and lipid metabolism (e.g. FABP3, ORMDL1 and SLC37A1) were also detected. By performing a GWAS for IMF content and composition traits recorded in the LD and GM muscles of 350 Duroc pigs, we identified the existence of one region on SSC14 (110-114 Mb) displaying significant associations with C18:0, C18:1(n-7), saturated and unsaturated fatty acid contents in both GM and LD muscles. Moreover, we detected several genome-wide significant associations that were not consistently found in both muscles. Further studies should be performed to confirm whether these associations are muscle-specific. Finally, the performance of an eQTL scan for 74 genes, located within GM QTL regions and with available microarray measurements of gene expression, made possible to identify 14 cis-eQTL regulating the expression of 14 loci, and six of them were confirmed by RNA-Seq. CONCLUSIONS: We have detected significant differences in the mRNA expression patterns of the porcine LD and GM muscles, evidencing that the transcriptomic profile of the skeletal muscle tissue is affected by anatomical, metabolic and functional factors. A highly significant association with IMF composition on SSC14 was replicated in both muscles, highlighting the existence of a common genetic determinism, but we also observed the existence of a few associations whose magnitude and significance varied between LD and GM muscles.


Genome-Wide Association Study , Lipid Metabolism/genetics , Muscle, Skeletal/growth & development , Quantitative Trait Loci/genetics , Adipose Tissue/growth & development , Adipose Tissue/metabolism , Animals , Gene Expression Regulation, Developmental/genetics , Humans , Meat/analysis , Muscle, Skeletal/metabolism , Paraspinal Muscles/growth & development , Paraspinal Muscles/metabolism , Phenotype , RNA, Messenger/genetics , Swine/genetics , Swine/growth & development , Thigh/growth & development
19.
PLoS One ; 13(10): e0205295, 2018.
Article En | MEDLINE | ID: mdl-30335783

The identification of biological processes related to the regulation of complex traits is a difficult task. Commonly, complex traits are regulated through a multitude of genes contributing each to a small part of the total genetic variance. Additionally, some loci can simultaneously regulate several complex traits, a phenomenon defined as pleiotropy. The lack of understanding on the biological processes responsible for the regulation of these traits results in the decrease of selection efficiency and the selection of undesirable hitchhiking effects. The identification of pleiotropic key-regulator genes can assist in developing important tools for investigating biological processes underlying complex traits. A multi-breed and multi-OMICs approach was applied to study the pleiotropic effects of key-regulator genes using three independent beef cattle populations evaluated for fertility traits. A pleiotropic map for 32 traits related to growth, feed efficiency, carcass and meat quality, and reproduction was used to identify genes shared among the different populations and breeds in pleiotropic regions. Furthermore, data-mining analyses were performed using the Cattle QTL database (CattleQTLdb) to identify the QTL category annotated in the regions around the genes shared among breeds. This approach allowed the identification of a main gene network (composed of 38 genes) shared among breeds. This gene network was significantly associated with thyroid activity, among other biological processes, and displayed a high regulatory potential. In addition, it was possible to identify genes with pleiotropic effects related to crucial biological processes that regulate economically relevant traits associated with fertility, production and health, such as MYC, PPARG, GSK3B, TG and IYD genes. These genes will be further investigated to better understand the biological processes involved in the expression of complex traits and assist in the identification of functional variants associated with undesirable phenotypes, such as decreased fertility, poor feed efficiency and negative energetic balance.


Fertility/genetics , Gene Expression Regulation , Genetic Pleiotropy , Meat/analysis , Quantitative Trait Loci , Quantitative Trait, Heritable , Animals , Breeding , Cattle , Data Mining , Databases, Genetic , Female , Gene Ontology , Gene Regulatory Networks , Glycogen Synthase Kinase 3 beta/genetics , Glycogen Synthase Kinase 3 beta/metabolism , Male , Microfilament Proteins/genetics , Microfilament Proteins/metabolism , Molecular Sequence Annotation , Muscle Proteins/genetics , Muscle Proteins/metabolism , PPAR gamma/genetics , PPAR gamma/metabolism , Proteomics/methods , Proto-Oncogene Proteins c-myc/genetics , Proto-Oncogene Proteins c-myc/metabolism , Reproduction/genetics , Selection, Genetic , Thyroid Gland/metabolism
20.
J Vet Sci ; 19(6): 858-861, 2018 Nov 30.
Article En | MEDLINE | ID: mdl-30304885

The freemartinism syndrome affects almost all female calves born as co-twins to male calves, whereas little is known about this phenomenon in female sheep. Within this context, 1,185 ewe-lambs from the Ripollesa sheep breed were genotyped for the presence of oY1 polymorphism (a non-autosomal region of the Y chromosome). Neither ewe-lambs from single births (856) nor ewe-lambs from all-female multiple births (170) were revealed as freemartins, whereas five of 159 ewe-lambs from multiple births with male co-twins were freemartins (3.15 ± 1.38%). All freemartin ewe-lambs were confirmed by physical examination of external genitalia. The results confirm a low incidence of freemartinism from heterosexual twin pregnancies in Ripollesa sheep.


Freemartinism/genetics , Sheep Diseases/genetics , Animals , Cattle , Female , Genotype , Male , Pregnancy , Sheep/genetics , Twins, Dizygotic/genetics
...