Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Viruses ; 13(3)2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33804121

RESUMEN

Small molecules targeting the PF74 binding site of the HIV-1 capsid protein (CA) confer potent and mechanistically unique antiviral activities. Structural modifications of PF74 could further the understanding of ligand binding modes, diversify ligand chemical classes, and allow identification of new variants with balanced antiviral activity and metabolic stability. In the current work, we designed and synthesized three series of PF74-like analogs featuring conformational constraints at the aniline terminus or the phenylalanine carboxamide moiety, and characterized them using a biophysical thermal shift assay (TSA), cell-based antiviral and cytotoxicity assays, and in vitro metabolic stability assays in human and mouse liver microsomes. These studies showed that the two series with the phenylalanine carboxamide moiety replaced by a pyridine or imidazole ring can provide viable hits. Subsequent SAR identified an improved analog 15 which effectively inhibited HIV-1 (EC50 = 0.31 µM), strongly stabilized CA hexamer (ΔTm = 8.7 °C), and exhibited substantially enhanced metabolic stability (t1/2 = 27 min for 15 vs. 0.7 min for PF74). Metabolic profiles from the microsomal stability assay also indicate that blocking the C5 position of the indole ring could lead to increased resistance to oxidative metabolism.


Asunto(s)
Fármacos Anti-VIH/síntesis química , Fármacos Anti-VIH/farmacología , Proteínas de la Cápside/metabolismo , VIH-1/efectos de los fármacos , Indoles/metabolismo , Fenilalanina/análogos & derivados , Bibliotecas de Moléculas Pequeñas/metabolismo , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Fármacos Anti-VIH/aislamiento & purificación , Sitios de Unión , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , Línea Celular , Diseño de Fármacos , Células HEK293 , Humanos , Indoles/farmacología , Hígado/efectos de los fármacos , Ratones , Microsomas/efectos de los fármacos , Modelos Moleculares , Conformación Molecular , Fenilalanina/metabolismo , Fenilalanina/farmacología , Replicación Viral/efectos de los fármacos
2.
Acta Pharm Sin B ; 11(3): 810-822, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33777683

RESUMEN

Of all known small molecules targeting human immunodeficiency virus (HIV) capsid protein (CA), PF74 represents by far the best characterized chemotype, due to its ability to confer antiviral phenotypes in both early and late phases of viral replication. However, the prohibitively low metabolic stability renders PF74 a poor antiviral lead. We report herein our medicinal chemistry efforts toward identifying novel and metabolically stable small molecules targeting the PF74 binding site. Specifically, we replaced the inter-domain-interacting, electron-rich indole ring of PF74 with less electron-rich isosteres, including imidazolidine-2,4-dione, pyrimidine-2,4-dione, and benzamide, and identified four potent antiviral compounds (10, 19, 20 and 26) with markedly improved metabolic stability. Compared to PF74, analog 20 exhibited similar submicromolar potency, and much longer (51-fold) half-life in human liver microsomes (HLMs). Molecular docking corroborated that 20 binds to the PF74 binding site, and revealed distinct binding interactions conferred by the benzamide moiety. Collectively, our data support compound 20 as a promising antiviral lead.

3.
Eur J Med Chem ; 204: 112626, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32814250

RESUMEN

The PF74 binding site in HIV-1 capsid protein (CA) is a compelling antiviral drug target. Although PF74 confers mechanistically distinct antiviral phenotypes by competing against host factors for CA binding, it suffers from prohibitively low metabolic stability. Therefore, there has been increasing interest in designing novel sub-chemotypes of PF74 with similar binding mode and improved metabolic stability. We report herein our efforts to explore the inter-domain interacting indole moiety for designing novel CA-targeting small molecules. Our design includes simple substitution on the indole ring, and more importantly, novel sub-chemotypes with the indole moiety replaced with a few less electron-rich rings. All 56 novel analogs were synthesized and evaluated for antiviral activity, cytotoxicity, and impact on CA hexamer stability. Selected analogs were tested for metabolic stability in liver microsomes. Molecular modeling was performed to verify compound binding to the PF74 site. In the end, 5-hydroxyindole analogs (8,9 and 12) showed improved potency (up to 20-fold) over PF74. Of the novel sub-chemotypes, α- and ß-naphthyl analogs (33 and 27) exhibited sub micromolar antiviral potencies comparable to that of PF74. Interestingly, although only moderately inhibiting HIV-1 (single-digit micromolar EC50s), analogs of the 2-indolone sub-chemotype consistently lowered the melting point (Tm) of CA hexamers, some with improved metabolic stability over PF74.


Asunto(s)
Fármacos Anti-VIH/farmacología , Cápside/efectos de los fármacos , VIH-1/metabolismo , Fármacos Anti-VIH/química , Sitios de Unión , Cápside/metabolismo , Línea Celular , VIH-1/fisiología , Humanos , Indoles/farmacología , Microsomas Hepáticos/efectos de los fármacos , Simulación del Acoplamiento Molecular , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
4.
FASEB J ; 34(7): 9433-9449, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32496609

RESUMEN

Mov10 is a processing body (P-body) protein and an interferon-stimulated gene that can affect replication of retroviruses, hepatitis B virus, and hepatitis C virus (HCV). The mechanism of HCV inhibition by Mov10 is unknown. Here, we investigate the effect of Mov10 on HCV infection and determine the virus life cycle steps affected by changes in Mov10 overexpression. Mov10 overexpression suppresses HCV RNA in both infectious virus and subgenomic replicon systems. Additionally, Mov10 overexpression decreases the infectivity of released virus, unlike control P-body protein DCP1a that has no effect on HCV RNA production or infectivity of progeny virus. Confocal imaging of uninfected cells shows endogenous Mov10 localized at P-bodies. However, in HCV-infected cells, Mov10 localizes in circular structures surrounding cytoplasmic lipid droplets with NS5A and core protein. Mutagenesis experiments show that the RNA binding activity of Mov10 is required for HCV inhibition, while its P-body localization, helicase, and ATP-binding functions are not required. Unexpectedly, endogenous Mov10 promotes HCV replication, as CRISPR-Cas9-based Mov10 depletion decreases HCV replication and infection levels. Our data reveal an important and complex role for Mov10 in HCV replication, which can be perturbed by excess or insufficient Mov10.


Asunto(s)
Hepacivirus/fisiología , Hepatitis C/prevención & control , Interacciones Huésped-Patógeno , ARN Helicasas/metabolismo , Replicación Viral , Hepacivirus/aislamiento & purificación , Hepatitis C/patología , Hepatitis C/virología , Humanos , ARN Helicasas/genética
5.
Eur J Med Chem ; 200: 112427, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32438252

RESUMEN

The capsid protein (CA) of HIV-1 plays essential roles in multiple steps of the viral replication cycle by assembling into functional capsid core, controlling the kinetics of uncoating and nuclear entry, and interacting with various host factors. Targeting CA represents an attractive yet underexplored antiviral approach. Of all known CA-targeting small molecule chemotypes, the peptidomimetic PF74 is particularly interesting because it binds to the same pocket used by a few important host factors, resulting in highly desirable antiviral phenotypes. However, further development of PF74 entails understanding its pharmacophore and mitigating its poor metabolic stability. We report herein the design, synthesis, and evaluation of a large number of PF74 analogs aiming to provide a comprehensive chemical profiling of PF74 and advance the understanding on its detailed binding mechanism and pharmacophore. The analogs, containing structural variations mainly in the aniline domain and/or the indole domain, were assayed for their effect on stability of CA hexamers, antiviral activity, and cytotoxicity. Selected analogs were also tested for metabolic stability in liver microsomes, alone or in the presence of a CYP3A inhibitor. Collectively, our studies identified important pharmacophore elements and revealed additional binding features of PF74, which could aid in future design of improved ligands to better probe the molecular basis of CA-host factor interactions, design strategies to disrupt them, and ultimately identify viable CA-targeting antiviral leads.


Asunto(s)
Fármacos Anti-VIH/farmacología , Proteínas de la Cápside/antagonistas & inhibidores , VIH-1/efectos de los fármacos , Indoles/farmacología , Fenilalanina/análogos & derivados , Animales , Fármacos Anti-VIH/química , Proteínas de la Cápside/metabolismo , Línea Celular , Relación Dosis-Respuesta a Droga , VIH-1/metabolismo , Humanos , Indoles/química , Ratones , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Fenilalanina/química , Fenilalanina/farmacología , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
6.
Viruses ; 12(4)2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32316297

RESUMEN

HIV-1 capsid protein (CA) plays an important role in many steps of viral replication and represents an appealing antiviral target. Several CA-targeting small molecules of various chemotypes have been studied, but the peptidomimetic PF74 has drawn particular interest due to its potent antiviral activity, well-characterized binding mode, and unique mechanism of action. Importantly, PF74 competes against important host factors for binding, conferring highly desirable antiviral phenotypes. However, further development of PF74 is hindered by its prohibitively poor metabolic stability, which necessitates the search for structurally novel and metabolically stable chemotypes. We have conducted a pharmacophore-based shape similarity search for compounds mimicking PF74. We report herein the analog synthesis and structure-activity relationship (SAR) of two hits from the search, and a third hit designed via molecular hybridization. All analogs were characterized for their effect on CA hexamer stability, antiviral activity, and cytotoxicity. These assays identified three active compounds that moderately stabilize CA hexamer and inhibit HIV-1. The most potent analog (10) inhibited HIV-1 comparably to PF74 but demonstrated drastically improved metabolic stability in liver microsomes (31 min vs. 0.7 min t1/2). Collectively, the current studies identified a structurally novel and metabolically stable PF74-like chemotype for targeting HIV-1 CA.


Asunto(s)
Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Cápside/química , Cápside/efectos de los fármacos , VIH-1/efectos de los fármacos , Sitios de Unión , Cápside/metabolismo , VIH-1/metabolismo , Humanos , Modelos Moleculares , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
7.
Viruses ; 11(7)2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31319455

RESUMEN

Moloney leukemia virus 10 (MOV10) is an RNA helicase that has been shown to affect the replication of several viruses. The effect of MOV10 on Hepatitis B virus (HBV) infection is not known and its role on the replication of this virus is poorly understood. We investigated the effect of MOV10 down-regulation and MOV10 over-expression on HBV in a variety of cell lines, as well as in an infection system using a replication competent virus. We report that MOV10 down-regulation, using siRNA, shRNA, and CRISPR/Cas9 gene editing technology, resulted in increased levels of HBV DNA, HBV pre-genomic RNA, and HBV core protein. In contrast, MOV10 over-expression reduced HBV DNA, HBV pre-genomic RNA, and HBV core protein. These effects were consistent in all tested cell lines, providing strong evidence for the involvement of MOV10 in the HBV life cycle. We demonstrated that MOV10 does not interact with HBV-core. However, MOV10 binds HBV pgRNA and this interaction does not affect HBV pgRNA decay rate. We conclude that the restriction of HBV by MOV10 is mediated through effects at the level of viral RNA.


Asunto(s)
Virus de la Hepatitis B/fisiología , Hepatitis B/virología , Interacciones Huésped-Patógeno , Interacciones Microbianas , Virus de la Leucemia Murina de Moloney/fisiología , Replicación Viral , Animales , Línea Celular , Células Cultivadas , Regulación Viral de la Expresión Génica , Humanos , Ratones , Unión Proteica , ARN , ARN Helicasas/metabolismo , ARN Viral , Proteínas Virales/metabolismo
8.
Eur J Med Chem ; 166: 390-399, 2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30739822

RESUMEN

The pharmacophore of active site inhibitors of human immunodeficiency virus (HIV) reverse transcriptase (RT)-associated RNase H typically entails a flexible linker connecting the chelating core and the hydrophobic aromatics. We report herein that novel 3-hydroxypyrimidine-2,4-dione (HPD) subtypes with a nonflexible C-6 carbonyl linkage exhibited potent and selective biochemical inhibitory profiles with strong RNase H inhibition at low nM, weak to moderate integrase strand transfer (INST) inhibition at low µM, and no to marginal RT polymerase (pol) inhibition up to 10 µM. A few analogues also demonstrated significant antiviral activity without cytotoxicity. The overall inhibitory profile is comparable to or better than that of previous HPD subtypes with a flexible C-6 linker, suggesting that the nonflexible carbonyl linker can be tolerated in the design of novel HIV RNase H active site inhibitors.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Transcriptasa Inversa del VIH/metabolismo , VIH-1/enzimología , Pirimidinonas/química , Pirimidinonas/farmacología , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Dominio Catalítico , Diseño de Fármacos , Inhibidores Enzimáticos/metabolismo , VIH-1/efectos de los fármacos , Concentración 50 Inhibidora , Simulación del Acoplamiento Molecular , Pirimidinonas/metabolismo , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/química , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/metabolismo
9.
Eur J Med Chem ; 156: 652-665, 2018 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-30031976

RESUMEN

Human immunodeficiency virus (HIV) reverse transcriptase (RT) associated ribonuclease H (RNase H) remains the only virally encoded enzymatic function not targeted by current drugs. Although a few chemotypes have been reported to inhibit HIV RNase H in biochemical assays, their general lack of significant antiviral activity in cell culture necessitates continued efforts in identifying highly potent RNase H inhibitors to confer antiviral activity. We report herein the design, synthesis, biochemical and antiviral evaluations of a new 6-arylthio subtype of the 3-hydroxypyrimidine-2,4-dione (HPD) chemotype. In biochemical assays these new analogues inhibited RT RNase H in single-digit nanomolar range without inhibiting RT polymerase (pol) at concentrations up to 10 µM, amounting to exceptional biochemical inhibitory selectivity. Many analogues also inhibited integrase strand transfer (INST) activity in low to sub micromolar range. More importantly, most analogues inhibited HIV in low micromolar range without cytotoxicity. In the end, compound 13j (RNase H IC50 = 0.005 µM; RT pol IC50 = 10 µM; INST IC50 = 4.0 µM; antiviral EC50 = 7.7 µM; CC50 > 100 µM) represents the best analogues within this series. These results characterize the new 6-arylthio-HPD subtype as a promising scaffold for HIV RNase H inhibitor discovery.


Asunto(s)
Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , VIH-1/efectos de los fármacos , Pirimidinonas/química , Pirimidinonas/farmacología , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Línea Celular , Diseño de Fármacos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/enzimología , Humanos , Modelos Moleculares , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/farmacología , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/metabolismo , Relación Estructura-Actividad
10.
Eur J Med Chem ; 156: 680-691, 2018 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-30031978

RESUMEN

Human immunodeficiency virus (HIV) reverse transcriptase (RT)-associated ribonuclease H (RNase H) remains an unvalidated drug target. Reported HIV RNase H inhibitors generally lack significant antiviral activity. We report herein the design, synthesis, biochemical and antiviral evaluations of a new 6-biphenylmethyl subtype of the 3-hydroxypyrimidine-2,4-dione (HPD) chemotype. In biochemical assays, analogues of this new subtype potently inhibited RT RNase H in low nanomolar range without inhibiting RT polymerase (pol) or integrase strand transfer (INST) at the highest concentrations tested. In cell-based assays, a few analogues inhibited HIV in low micromolar range without cytotoxicity at concentrations up to 100 µM.


Asunto(s)
Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , VIH-1/efectos de los fármacos , Pirimidinonas/química , Pirimidinonas/farmacología , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Dominio Catalítico/efectos de los fármacos , Línea Celular , Diseño de Fármacos , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/enzimología , Humanos , Metilación , Modelos Moleculares , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/farmacología , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/química , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/metabolismo , Relación Estructura-Actividad
11.
Eur J Med Chem ; 141: 149-161, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29031062

RESUMEN

Human immunodeficiency virus (HIV) reverse transcriptase (RT) associated ribonuclease H (RNase H) is the only HIV enzymatic function not targeted by current antiviral drugs. Although various chemotypes have been reported to inhibit HIV RNase H, few have shown significant antiviral activities. We report herein the design, synthesis and biological evaluation of a novel N-hydroxy thienopyrimidine-2,3-dione chemotype (11) which potently and selectively inhibited RNase H with considerable potency against HIV-1 in cell culture. Current structure-activity-relationship (SAR) identified analogue 11d as a nanomolar inhibitor of RNase H (IC50 = 0.04 µM) with decent antiviral potency (EC50 = 7.4 µM) and no cytotoxicity (CC50 > 100 µM). In extended biochemical assays compound 11d did not inhibit RT polymerase (pol) while inhibiting integrase strand transfer (INST) with 53 fold lower potency (IC50 = 2.1 µM) than RNase H inhibition. Crystallographic and molecular modeling studies confirmed the RNase H active site binding mode.


Asunto(s)
Antivirales/farmacología , Diseño de Fármacos , Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH/efectos de los fármacos , Pirimidinonas/farmacología , Inhibidores de la Transcriptasa Inversa/farmacología , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Tiofenos/farmacología , Antivirales/síntesis química , Antivirales/química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Transcriptasa Inversa del VIH/metabolismo , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Pirimidinonas/síntesis química , Pirimidinonas/química , Inhibidores de la Transcriptasa Inversa/síntesis química , Inhibidores de la Transcriptasa Inversa/química , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/metabolismo , Relación Estructura-Actividad , Tiofenos/síntesis química , Tiofenos/química
12.
J Med Chem ; 60(12): 5045-5056, 2017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28525279

RESUMEN

Human immunodeficiency virus (HIV) reverse transcriptase (RT)-associated ribonuclease H (RNase H) remains the only virally encoded enzymatic function yet to be exploited as an antiviral target. One of the possible challenges may be that targeting HIV RNase H is confronted with a steep substrate barrier. We have previously reported a 3-hydroxypyrimidine-2,4-dione (HPD) subtype that potently and selectively inhibited RNase H without inhibiting HIV in cell culture. We report herein a critical redesign of the HPD chemotype featuring an additional wing at the C5 position that led to drastically improved RNase H inhibition and significant antiviral activity. Structure-activity relationship (SAR) concerning primarily the length and flexibility of the two wings revealed important structural features that dictate the potency and selectivity of RNase H inhibition as well as the observed antiviral activity. Our current medicinal chemistry data also revealed that the RNase H biochemical inhibition largely correlated the antiviral activity.


Asunto(s)
Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Inhibidores Enzimáticos/farmacología , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Dominio Catalítico , Línea Celular , Técnicas de Química Sintética , Evaluación Preclínica de Medicamentos/métodos , Inhibidores Enzimáticos/química , Inhibidores de Integrasa VIH/química , Inhibidores de Integrasa VIH/farmacología , Humanos , Pirimidinonas/química , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/metabolismo , Relación Estructura-Actividad
13.
Eur J Med Chem ; 128: 168-179, 2017 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-28182989

RESUMEN

3-Hydroxypyrimidine-2,4-dione (HPD) represents a versatile chemical core in the design of inhibitors of human immunodeficiency virus (HIV) reverse transcriptase (RT)-associated RNase H and integrase strand transfer (INST). We report herein the design, synthesis and biological evaluation of an HPD subtype (4) featuring a cyclohexylmethyl group at the C-6 position. Antiviral testing showed that most analogues of 4 inhibited HIV-1 in the low nanomolar to submicromolar range, without cytotoxicity at concentrations up to 100 µM. Biochemically, these analogues dually inhibited both the polymerase (pol) and the RNase H functions of RT, but not INST. Co-crystal structure of 4a with RT revealed a nonnucleoside RT inhibitor (NNRTI) binding mode. Interestingly, chemotype 11, the synthetic precursor of 4 lacking the 3-OH group, did not inhibit RNase H while potently inhibiting pol. By virtue of the potent antiviral activity and biochemical RNase H inhibition, HPD subtype 4 could provide a viable platform for eventually achieving potent and selective RNase H inhibition through further medicinal chemistry.


Asunto(s)
Fármacos Anti-VIH/farmacología , Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH-1/efectos de los fármacos , Pirimidinonas/farmacología , Inhibidores de la Transcriptasa Inversa/farmacología , Ribonucleasa H del Virus de la Inmunodeficiencia Humana/antagonistas & inhibidores , Uracilo/análogos & derivados , Fármacos Anti-VIH/síntesis química , Sitios de Unión , Cristalización , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Humanos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Reacción en Cadena de la Polimerasa , Pirimidinonas/síntesis química , Inhibidores de la Transcriptasa Inversa/síntesis química , Relación Estructura-Actividad , Uracilo/síntesis química , Uracilo/farmacología
14.
J Med Chem ; 59(13): 6136-48, 2016 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-27283261

RESUMEN

Resistance selection by human immunodeficiency virus (HIV) toward known drug regimens necessitates the discovery of structurally novel antivirals with a distinct resistance profile. On the basis of our previously reported 3-hydroxypyrimidine-2,4-dione (HPD) core, we have designed and synthesized a new integrase strand transfer (INST) inhibitor type featuring a 5-N-benzylcarboxamide moiety. Significantly, the 6-alkylamino variant of this new chemotype consistently conferred low nanomolar inhibitory activity against HIV-1. Extended antiviral testing against a few raltegravir-resistant HIV-1 clones revealed a resistance profile similar to that of the second generation INST inhibitor (INSTI) dolutegravir. Although biochemical testing and molecular modeling also strongly corroborate the inhibition of INST as the antiviral mechanism of action, selected antiviral analogues also potently inhibited reverse transcriptase (RT) associated RNase H, implying potential dual target inhibition. In vitro ADME assays demonstrated that this novel chemotype possesses largely favorable physicochemical properties suitable for further development.


Asunto(s)
Infecciones por VIH/tratamiento farmacológico , Inhibidores de Integrasa VIH/farmacología , VIH-1/efectos de los fármacos , VIH-1/enzimología , Pirimidinonas/farmacología , Ribonucleasa H/antagonistas & inhibidores , Línea Celular , Farmacorresistencia Viral , Infecciones por VIH/virología , Integrasa de VIH/metabolismo , Inhibidores de Integrasa VIH/química , VIH-1/fisiología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Humanos , Modelos Moleculares , Oxazinas , Piperazinas , Piridonas , Pirimidinonas/química , Raltegravir Potásico/farmacología , Ribonucleasa H/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA