Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Sci Rep ; 14(1): 5025, 2024 02 29.
Artículo en Inglés | MEDLINE | ID: mdl-38424144

RESUMEN

Tissues are spatially orchestrated ecosystems composed of heterogeneous cell populations and non-cellular elements. Tissue components' interactions shape the biological processes that govern homeostasis and disease, thus comprehensive insights into tissues' composition are crucial for understanding their biology. Recently, advancements in the spatial biology field enabled the in-depth analyses of tissue architecture at single-cell resolution, while preserving the structural context. The increasing number of biomarkers analyzed, together with whole tissue imaging, generate datasets approaching several hundreds of gigabytes in size, which are rich sources of valuable knowledge but require investments in infrastructure and resources for extracting quantitative information. The analysis of multiplex whole-tissue images requires extensive training and experience in data analysis. Here, we showcase how a set of open-source tools can allow semi-automated image data extraction to study the spatial composition of tissues with a focus on tumor microenvironment (TME). With the use of Lunaphore COMET platform, we interrogated lung cancer specimens where we examined the expression of 20 biomarkers. Subsequently, the tissue composition was interrogated using an in-house optimized nuclei detection algorithm followed by a newly developed image artifact exclusion approach. Thereafter, the data was processed using several publicly available tools, highlighting the compatibility of COMET-derived data with currently available image analysis frameworks. In summary, we showcased an innovative semi-automated workflow that highlights the ease of adoption of multiplex imaging to explore TME composition at single-cell resolution using a simple slide in, data out approach. Our workflow is easily transferrable to various cohorts of specimens to provide a toolset for spatial cellular dissection of the tissue composition.


Asunto(s)
Ecosistema , Neoplasias Pulmonares , Humanos , Algoritmos , Procesamiento de Imagen Asistido por Computador , Biomarcadores , Microambiente Tumoral
2.
Sci Rep ; 13(1): 16994, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813886

RESUMEN

Tissues are complex environments where different cell types are in constant interaction with each other and with non-cellular components. Preserving the spatial context during proteomics analyses of tissue samples has become an important objective for different applications, one of the most important being the investigation of the tumor microenvironment. Here, we describe a multiplexed protein biomarker detection method on the COMET instrument, coined sequential ImmunoFluorescence (seqIF). The fully automated method uses successive applications of antibody incubation and elution, and in-situ imaging enabled by an integrated microscope and a microfluidic chip that provides optimized optical access to the sample. We show seqIF data on different sample types such as tumor and healthy tissue, including 40-plex on a single tissue section that is obtained in less than 24 h, using off-the-shelf antibodies. We also present extensive characterization of the developed method, including elution efficiency, epitope stability, repeatability and reproducibility, signal uniformity, and dynamic range, in addition to marker and panel optimization strategies. The streamlined workflow using off-the-shelf antibodies, data quality enabling downstream analysis, and ease of reaching hyperplex levels make seqIF suitable for immune-oncology research and other disciplines requiring spatial analysis, paving the way for its adoption in clinical settings.


Asunto(s)
Anticuerpos , Proteómica , Proteómica/métodos , Reproducibilidad de los Resultados , Técnica del Anticuerpo Fluorescente , Biomarcadores
3.
Nat Biotechnol ; 41(10): 1405-1409, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36823353

RESUMEN

In this study, we extended co-indexing of transcriptomes and epitopes (CITE) to the spatial dimension and demonstrated high-plex protein and whole transcriptome co-mapping. We profiled 189 proteins and whole transcriptome in multiple mouse tissue types with spatial CITE sequencing and then further applied the method to measure 273 proteins and transcriptome in human tissues, revealing spatially distinct germinal center reactions in tonsil and early immune activation in skin at the Coronavirus Disease 2019 mRNA vaccine injection site.


Asunto(s)
Análisis de la Célula Individual , Transcriptoma , Animales , Ratones , Humanos , Transcriptoma/genética , Epítopos , ARN Mensajero , Perfilación de la Expresión Génica/métodos
4.
Res Sq ; 2022 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-35378748

RESUMEN

We present spatial-CITE-seq for high-plex protein and whole transcriptome co-mapping, which was firstly demonstrated for profiling 198 proteins and transcriptome in multiple mouse tissue types. It was then applied to human tissues to measure 283 proteins and transcriptome that revealed spatially distinct germinal center reaction in tonsil and early immune activation in skin at the COVID-19 mRNA vaccine injection site. Spatial-CITE-seq may find a range of applications in biomedical research.

5.
Front Genet ; 13: 1056114, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36685855

RESUMEN

In 2002 we published an article describing a population of vessel-associated progenitors that we termed mesoangioblasts (MABs). During the past decade evidence had accumulated that during muscle development and regeneration things may be more complex than a simple sequence of binary choices (e.g., dorsal vs. ventral somite). LacZ expressing fibroblasts could fuse with unlabelled myoblasts but not among themselves or with other cell types. Bone marrow derived, circulating progenitors were able to participate in muscle regeneration, though in very small percentage. Searching for the embryonic origin of these progenitors, we identified them as originating at least in part from the embryonic aorta and, at later stages, from the microvasculature of skeletal muscle. While continuing to investigate origin and fate of MABs, the fact that they could be expanded in vitro (also from human muscle) and cross the vessel wall, suggested a protocol for the cell therapy of muscular dystrophies. We tested this protocol in mice and dogs before proceeding to the first clinical trial on Duchenne Muscular Dystrophy patients that showed safety but minimal efficacy. In the last years, we have worked to overcome the problem of low engraftment and tried to understand their role as auxiliary myogenic progenitors during development and regeneration.

6.
Int J Mol Sci ; 22(4)2021 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-33669272

RESUMEN

Muscular regeneration is a complex biological process that occurs during acute injury and chronic degeneration, implicating several cell types. One of the earliest events of muscle regeneration is the inflammatory response, followed by the activation and differentiation of muscle progenitor cells. However, the process of novel neuromuscular junction formation during muscle regeneration is still largely unexplored. Here, we identify by single-cell RNA sequencing and isolate a subset of vessel-associated cells able to improve myogenic differentiation. We termed them 'guide' cells because of their remarkable ability to improve myogenesis without fusing with the newly formed fibers. In vitro, these cells showed a marked mobility and ability to contact the forming myotubes. We found that these cells are characterized by CD44 and CD34 surface markers and the expression of Ng2 and Ncam2. In addition, in a murine model of acute muscle injury and regeneration, injection of guide cells correlated with increased numbers of newly formed neuromuscular junctions. Thus, we propose that guide cells modulate de novo generation of neuromuscular junctions in regenerating myofibers. Further studies are necessary to investigate the origin of those cells and the extent to which they are required for terminal specification of regenerating myofibers.


Asunto(s)
Células Endoteliales/metabolismo , Endotelio Vascular/citología , Músculo Esquelético/fisiología , Músculo Liso Vascular/citología , Unión Neuromuscular/fisiología , Regeneración/fisiología , Animales , Antígenos CD34/metabolismo , Diferenciación Celular/fisiología , Células Endoteliales/trasplante , Endotelio Vascular/metabolismo , Receptores de Hialuranos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Desarrollo de Músculos/fisiología , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/lesiones , Músculo Liso Vascular/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , RNA-Seq , Factores de Transcripción SOXB1/metabolismo , Análisis de la Célula Individual/métodos
7.
Sci Rep ; 10(1): 10681, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32606364

RESUMEN

One of the main challenges in cell therapy for muscle diseases is to efficiently target the muscle. To address this issue and achieve better understanding of in vivo cell fate, we evaluated the relevance of a non-invasive cell tracking method in the Golden Retriever Muscular Dystrophy (GRMD) model, a well-recognised model of Duchenne Muscular Dystrophy (DMD). Mesoangioblasts were directly labelled with 111In-oxine, and injected through one of the femoral arteries. The scintigraphy images obtained provided the first quantitative mapping of the immediate biodistribution of mesoangioblasts in a large animal model of DMD. The results revealed that cells were trapped by the first capillary filters: the injected limb and the lung. During the days following injection, radioactivity was redistributed to the liver. In vitro studies, performed with the same cells prepared for injecting the animal, revealed prominent cell death and 111In release. In vivo, cell death resulted in 111In release into the vasculature that was taken up by the liver, resulting in a non-specific and non-cell-bound radioactive signal. Indirect labelling methods would be an attractive alternative to track cells on the mid- and long-term.


Asunto(s)
Movimiento Celular/fisiología , Distrofia Muscular Animal/patología , Distrofia Muscular de Duchenne/patología , Células Madre/patología , Animales , Diferenciación Celular/fisiología , Rastreo Celular/métodos , Modelos Animales de Enfermedad , Perros , Distrofina/metabolismo , Femenino , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Muscular Animal/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Cintigrafía/métodos , Células Madre/metabolismo , Distribución Tisular/fisiología
8.
Cell Death Dis ; 11(2): 127, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32071288

RESUMEN

Muscular Dystrophies are severe genetic diseases due to mutations in structural genes, characterized by progressive muscle wasting that compromises patients' mobility and respiratory functions. Literature underlined oxidative stress and inflammation as key drivers of these pathologies. Interestingly among different myofiber classes, type I fibers display a milder dystrophic phenotype showing increased oxidative metabolism. This work shows the benefits of a cyanidin-enriched diet, that promotes muscle fiber-type switch and reduced inflammation in dystrophic alpha-sarcoglyan (Sgca) null mice having, as a net outcome, morphological and functional rescue. Notably, this benefit is achieved also when the diet is administered in dystrophic animals when the signs of the disease are seriously evident. Our work provides compelling evidence that a cyanidin-rich diet strongly delays the progression of muscular dystrophies, paving the way for a combinatorial approach where nutritional-based reduction of muscle inflammation and oxidative stress facilitate the successful perspectives of definitive treatments.


Asunto(s)
Antocianinas/administración & dosificación , Suplementos Dietéticos , Mediadores de Inflamación/metabolismo , Mitocondrias Musculares/metabolismo , Músculo Esquelético/metabolismo , Estrés Oxidativo , Sarcoglicanopatías/dietoterapia , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Masculino , Ratones Noqueados , Mitocondrias Musculares/patología , Músculo Esquelético/patología , Biogénesis de Organelos , Fenotipo , Carbonilación Proteica , Sarcoglicanopatías/genética , Sarcoglicanopatías/metabolismo , Sarcoglicanopatías/patología , Sarcoglicanos/deficiencia , Sarcoglicanos/genética
9.
Philos Trans R Soc Lond B Biol Sci ; 375(1795): 20190334, 2020 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-32068487

RESUMEN

KAP1 (KRAB-associated protein 1) is best known as a co-repressor responsible for inducing heterochromatin formation, notably at transposable elements. However, it has also been observed to bind the transcription start site of actively expressed genes. To address this paradox, we characterized the protein interactome of KAP1 in the human K562 erythro-leukaemia cell line. We found that the regulator can associate with a wide range of nucleic acid binding proteins, nucleosome remodellers, chromatin modifiers and other transcription modulators. We further determined that KAP1 is recruited at actively transcribed polymerase II promoters, where its depletion resulted in pleomorphic effects, whether expression of these genes was normally constitutive or inducible, consistent with the breadth of possible KAP1 interactors. This article is part of a discussion meeting issue 'Crossroads between transposons and gene regulation'.


Asunto(s)
Regulación de la Expresión Génica , ARN Polimerasa II/metabolismo , Transcripción Genética , Proteína 28 que Contiene Motivos Tripartito/genética , Humanos , Células K562 , Proteína 28 que Contiene Motivos Tripartito/metabolismo
11.
Nat Commun ; 10(1): 1809, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-31000713

RESUMEN

Krüppel-associated box zinc finger proteins (KZFPs) constitute the largest family of mammalian transcription factors, but most remain completely uncharacterized. While initially proposed to primarily repress transposable elements, recent reports have revealed that KFZPs contribute to a wide variety of other biological processes. Using murine and human in vitro and in vivo models, we demonstrate here that one poorly studied KZFP, ZFP30, promotes adipogenesis by directly targeting and activating a retrotransposon-derived Pparg2 enhancer. Through mechanistic studies, we further show that ZFP30 recruits the co-regulator KRAB-associated protein 1 (KAP1), which, surprisingly, acts as a ZFP30 co-activator in this adipogenic context. Our findings provide an understanding of both adipogenic and KZFP-KAP1 complex-mediated gene regulation, showing that the KZFP-KAP1 axis can also function in a non-repressive manner.


Asunto(s)
Adipogénesis/genética , Proteínas de Unión al ADN/metabolismo , Factores de Transcripción/metabolismo , Proteína 28 que Contiene Motivos Tripartito/metabolismo , Dedos de Zinc/fisiología , Células 3T3 , Adipocitos/fisiología , Animales , Biología Computacional , Proteínas de Unión al ADN/genética , Elementos de Facilitación Genéticos , Femenino , Regulación de la Expresión Génica/fisiología , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , PPAR gamma/genética , Regiones Promotoras Genéticas/genética , Retroelementos/genética , Factores de Transcripción/genética
13.
Hepatology ; 69(5): 2214-2231, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30549291

RESUMEN

The liver is an organ with strong regenerative capacity, yet primary hepatocytes have a low amplification potential in vitro, a major limitation for the cell-based therapy of liver disorders and for ex vivo biological screens. Induced pluripotent stem cells (iPSCs) may help to circumvent this obstacle but often harbor genetic and epigenetic abnormalities, limiting their potential. Here, we describe the pharmacological induction of proliferative human hepatic progenitor cells (HPCs) through a cocktail of growth factors and small molecules mimicking the signaling events involved in liver regeneration. Human HPCs from healthy donors and pediatric patients proliferated vigorously while maintaining their genomic stability and could be redifferentiated in vitro into metabolically competent cells that supported the replication of hepatitis B and delta viruses. Redifferentiation efficiency was boosted by three-dimensional culture. Finally, transcriptome analysis showed that HPCs were more closely related to mature hepatocytes than iPSC-derived hepatocyte-like cells were. Conclusion: HPC induction holds promise for a variety of applications such as ex vivo disease modeling, personalized drug testing or metabolic studies, and development of a bioartificial liver.


Asunto(s)
Técnicas de Cultivo de Célula , Medios de Cultivo/química , Hepatocitos/fisiología , Hígado/citología , Células Madre , Animales , Estudios de Casos y Controles , Masculino , Ratones Endogámicos NOD , Cultivo Primario de Células
14.
Hepatology ; 66(1): 235-251, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28370258

RESUMEN

Hepatocellular carcinoma (HCC) represents the fifth-most common form of cancer worldwide and carries a high mortality rate attributed to lack of effective treatment. Males are 8 times more likely to develop HCC than females, an effect largely driven by sex hormones, albeit through still poorly understood mechanisms. We previously identified TRIM28 (tripartite protein 28), a scaffold protein capable of recruiting a number of chromatin modifiers, as a crucial mediator of sexual dimorphism in the liver. Trim28hep-/- mice display sex-specific transcriptional deregulation of a wide range of bile and steroid metabolism genes and development of liver adenomas in males. We now demonstrate that obesity and aging precipitate alterations of TRIM28-dependent transcriptional dynamics, leading to a metabolic infection state responsible for highly penetrant male-restricted hepatic carcinogenesis. Molecular analyses implicate aberrant androgen receptor stimulation, biliary acid disturbances, and altered responses to gut microbiota in the pathogenesis of Trim28hep-/- -associated HCC. Correspondingly, androgen deprivation markedly attenuates the frequency and severity of tumors, and raising animals under axenic conditions completely abrogates their abnormal phenotype, even upon high-fat diet challenge. CONCLUSION: This work underpins how discrete polyphenic traits in epigenetically metastable conditions can contribute to a cancer-prone state and more broadly provides new evidence linking hormonal imbalances, metabolic disturbances, gut microbiota, and cancer. (Hepatology 2017;66:235-251).


Asunto(s)
Carcinogénesis/patología , Carcinoma Hepatocelular/genética , Inestabilidad Genómica , Neoplasias Hepáticas/genética , Proteínas Represoras/genética , Envejecimiento/genética , Animales , Carcinoma Hepatocelular/patología , Dieta Alta en Grasa , Modelos Animales de Enfermedad , Epigenómica/métodos , Femenino , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estrés Oxidativo , Fenotipo , Distribución Aleatoria , Medición de Riesgo , Factores de Riesgo , Proteína 28 que Contiene Motivos Tripartito
15.
PLoS One ; 12(3): e0173746, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28334004

RESUMEN

KRAB-containing poly-zinc finger proteins (KZFPs) constitute the largest family of transcription factors encoded by mammalian genomes, and growing evidence indicates that they fulfill functions critical to both embryonic development and maintenance of adult homeostasis. KZFP genes underwent broad and independent waves of expansion in many higher vertebrates lineages, yet comprehensive studies of members harbored by a given species are scarce. Here we present a thorough analysis of KZFP genes and related units in the murine genome. We first identified about twice as many elements than previously annotated as either KZFP genes or pseudogenes, notably by assigning to this family an entity formerly considered as a large group of Satellite repeats. We then could delineate an organization in clusters distributed throughout the genome, with signs of recombination, translocation, duplication and seeding of new sites by retrotransposition of KZFP genes and related genetic units (KZFP/rGUs). Moreover, we harvested evidence indicating that closely related paralogs had evolved through both drifting and shifting of sequences encoding for zinc finger arrays. Finally, we could demonstrate that the KAP1-SETDB1 repressor complex tames the expression of KZFP/rGUs within clusters, yet that the primary targets of this regulation are not the KZFP/rGUs themselves but enhancers contained in neighboring endogenous retroelements and that, underneath, KZFPs conserve highly individualized patterns of expression.


Asunto(s)
Proteínas Portadoras/genética , Genoma/genética , Proteínas Nucleares/genética , Proteínas Represoras/genética , Animales , Genes/genética , Ratones/genética , Familia de Multigenes/genética , Filogenia
16.
Dev Cell ; 36(6): 611-23, 2016 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-27003935

RESUMEN

KRAB-containing zinc finger proteins (KRAB-ZFPs) are early embryonic controllers of transposable elements (TEs), which they repress with their cofactor KAP1 through histone and DNA methylation, a process thought to result in irreversible silencing. Using a target-centered functional screen, we matched murine TEs with their cognate KRAB-ZFP. We found the paralogs ZFP932 and Gm15446 to bind overlapping but distinguishable subsets of ERVK (endogenous retrovirus K), repress these elements in embryonic stem cells, and regulate secondarily the expression of neighboring genes. Most importantly, we uncovered that these KRAB-ZFPs and KAP1 control TEs in adult tissues, in cell culture and in vivo, where they partner up to modulate cellular genes. Therefore, TEs and KRAB-ZFPs establish transcriptional networks that likely regulate not only development but also many physiological events. Given the high degree of species specificity of TEs and KRAB-ZFPs, these results have important implications for understanding the biology of higher vertebrates, including humans.


Asunto(s)
Elementos Transponibles de ADN/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Dedos de Zinc/genética , Secuencia de Aminoácidos , Animales , Diferenciación Celular , Células Madre Embrionarias/metabolismo , Retrovirus Endógenos/genética , Retrovirus Endógenos/metabolismo , Regulación de la Expresión Génica , Humanos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Proteínas Nucleares/deficiencia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Represoras/deficiencia , Proteína 28 que Contiene Motivos Tripartito
17.
Stem Cells Int ; 2016: 4969430, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26681949

RESUMEN

The Duchenne and Becker muscular dystrophies are caused by mutation of dystrophin gene and primarily affect skeletal and cardiac muscles. Cardiac involvement in dystrophic GRMD dogs has been demonstrated by electrocardiographic studies with the onset of a progressive cardiomyopathy similar to the cardiac disease in DMD patients. In this respect, GRMD is a useful model to explore cardiac and skeletal muscle pathogenesis and for developing new therapeutic protocols. Here we describe a protocol to convert GRMD canine fibroblasts isolated from heart and skin into induced cardiac-like myocytes (ciCLMs). We used a mix of transcription factors (GATA4, HAND2, TBX5, and MEF2C), known to be able to differentiate mouse and human somatic cells into ciCLMs. Exogenous gene expression was obtained using four lentiviral vectors carrying transcription factor genes and different resistance genes. Our data demonstrate a direct switch from fibroblast into ciCLMs with no activation of early cardiac genes. ciCLMs were unable to contract spontaneously, suggesting, differently from mouse and human cells, an incomplete differentiation process. However, when transplanted in neonatal hearts of SCID/Beige mice, ciCLMs participate in cardiac myogenesis.

18.
Elife ; 42015 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-25846574

RESUMEN

Human cytomegalovirus (HCMV) is a highly prevalent pathogen that induces life-long infections notably through the establishment of latency in hematopoietic stem cells (HSC). Bouts of reactivation are normally controlled by the immune system, but can be fatal in immuno-compromised individuals such as organ transplant recipients. Here, we reveal that HCMV latency in human CD34(+) HSC reflects the recruitment on the viral genome of KAP1, a master co-repressor, together with HP1 and the SETDB1 histone methyltransferase, which results in transcriptional silencing. During lytic infection, KAP1 is still associated with the viral genome, but its heterochromatin-inducing activity is suppressed by mTOR-mediated phosphorylation. Correspondingly, HCMV can be forced out of latency by KAP1 knockdown or pharmacological induction of KAP1 phosphorylation, and this process can be potentiated by activating NFkB with TNF-α. These results suggest new approaches both to curtail CMV infection and to purge the virus from organ transplants.


Asunto(s)
Citomegalovirus/fisiología , Proteínas Represoras/metabolismo , Latencia del Virus/fisiología , Antígenos CD34/metabolismo , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Citomegalovirus/genética , Genoma Viral , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/virología , N-Metiltransferasa de Histona-Lisina , Histonas/metabolismo , Humanos , Lisina/metabolismo , Metilación , Monocitos/virología , FN-kappa B/metabolismo , Fosforilación , Proteína Metiltransferasas , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Serina-Treonina Quinasas TOR/metabolismo , Proteína 28 que Contiene Motivos Tripartito , Replicación Viral
19.
Genes Dev ; 29(5): 513-25, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25737281

RESUMEN

The transcriptional activator MyoD serves as a master controller of myogenesis. Often in partnership with Mef2 (myocyte enhancer factor 2), MyoD binds to the promoters of hundreds of muscle genes in proliferating myoblasts yet activates these targets only upon receiving cues that launch differentiation. What regulates this off/on switch of MyoD function has been incompletely understood, although it is known to reflect the action of chromatin modifiers. Here, we identify KAP1 (KRAB [Krüppel-like associated box]-associated protein 1)/TRIM28 (tripartite motif protein 28) as a key regulator of MyoD function. In myoblasts, KAP1 is present with MyoD and Mef2 at many muscle genes, where it acts as a scaffold to recruit not only coactivators such as p300 and LSD1 but also corepressors such as G9a and HDAC1 (histone deacetylase 1), with promoter silencing as the net outcome. Upon differentiation, MSK1-mediated phosphorylation of KAP1 releases the corepressors from the scaffold, unleashing transcriptional activation by MyoD/Mef2 and their positive cofactors. Thus, our results reveal KAP1 as a previously unappreciated interpreter of cell signaling, which modulates the ability of MyoD to drive myogenesis.


Asunto(s)
Diferenciación Celular , Desarrollo de Músculos/fisiología , Músculo Esquelético/citología , Proteína MioD/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Represoras/metabolismo , Animales , Línea Celular , Regulación del Desarrollo de la Expresión Génica , Factores de Transcripción MEF2/metabolismo , Ratones , Proteína MioD/genética , Mioblastos/citología , Proteínas Nucleares/genética , Fosforilación , Proteínas Represoras/genética , Transducción de Señal , Proteína 28 que Contiene Motivos Tripartito
20.
Front Aging Neurosci ; 6: 90, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24860499

RESUMEN

The skeletal fibers have different embryological origin; the extraocular and jaw-closer muscles develop from prechordal mesoderm while the limb and trunk muscles from somites. These different origins characterize also the adult muscle stem cells, known as satellite cells (SCs) and responsible for the fiber growth and regeneration. The physiological properties of presomitic SCs and their epigenetics are poorly studied despite their peculiar characteristics to preserve muscle integrity during chronic muscle degeneration. Here, we isolated SCs from canine somitic [somite-derived muscle (SDM): vastus lateralis, rectus abdominis, gluteus superficialis, biceps femoris, psoas] and presomitic [pre-somite-derived muscle (PSDM): lateral rectus, temporalis, and retractor bulbi] muscles as myogenic progenitor cells from young and old animals. In addition, SDM and PSDM-SCs were obtained also from golden retrievers affected by muscular dystrophy (GRMD). We characterized the lifespan, the myogenic potential and functions, and oxidative stress of both somitic and presomitic SCs with the aim to reveal differences with aging and between healthy and dystrophic animals. The different proliferation rate was consistent with higher telomerase activity in PSDM-SCs compared to SDM-SCs, although restricted at early passages. SDM-SCs express early (Pax7, MyoD) and late (myosin heavy chain, myogenin) myogenic markers differently from PSDM-SCs resulting in a more efficient and faster cell differentiation. Taken together, our results showed that PSDM-SCs elicit a stronger stem cell phenotype compared to SDM ones. Finally, myomiR expression profile reveals a unique epigenetic signature in GRMD SCs and miR-206, highly expressed in dystrophic SCs, seems to play a critical role in muscle degeneration. Thus, miR-206 could represent a potential target for novel therapeutic approaches.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA