Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 115(46): E10907-E10914, 2018 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-30381459

RESUMEN

The translational potential of cell-based therapies is often limited by complications related to effectively engineering and manufacturing functional cells. While the use of electroporation is widespread, the impact of electroporation on cell state and function has yet to be fully characterized. Here, we use a genome-wide approach to study optimized electroporation treatment and identify striking disruptions in the expression profiles of key functional transcripts of human T cells. These genetic disruptions result in concomitant perturbation of cytokine secretion including a 648-fold increase in IL-2 secretion (P < 0.01) and a 30-fold increase in IFN-γ secretion (P < 0.05). Ultimately, the effects at the transcript and protein level resulted in functional deficiencies in vivo, with electroporated T cells failing to demonstrate sustained antigen-specific effector responses when subjected to immunological challenge. In contrast, cells subjected to a mechanical membrane disruption-based delivery mechanism, cell squeezing, had minimal aberrant transcriptional responses [0% of filtered genes misregulated, false discovery rate (FDR) q < 0.1] relative to electroporation (17% of genes misregulated, FDR q < 0.1) and showed undiminished effector responses, homing capabilities, and therapeutic potential in vivo. In a direct comparison of functionality, T cells edited for PD-1 via electroporation failed to distinguish from untreated controls in a therapeutic tumor model, while T cells edited with similar efficiency via cell squeezing demonstrated the expected tumor-killing advantage. This work demonstrates that the delivery mechanism used to insert biomolecules affects functionality and warrants further study.


Asunto(s)
Ingeniería Celular/métodos , Microfluídica/métodos , Células Dendríticas/inmunología , Electroporación/métodos , Humanos , ARN Mensajero/metabolismo , Linfocitos T/inmunología , Transcriptoma
2.
Mol Biol Cell ; 28(11): 1467-1488, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28381423

RESUMEN

Metastasis requires tumor cells to navigate through a stiff stroma and squeeze through confined microenvironments. Whether tumors exploit unique biophysical properties to metastasize remains unclear. Data show that invading mammary tumor cells, when cultured in a stiffened three-dimensional extracellular matrix that recapitulates the primary tumor stroma, adopt a basal-like phenotype. Metastatic tumor cells and basal-like tumor cells exert higher integrin-mediated traction forces at the bulk and molecular levels, consistent with a motor-clutch model in which motors and clutches are both increased. Basal-like nonmalignant mammary epithelial cells also display an altered integrin adhesion molecular organization at the nanoscale and recruit a suite of paxillin-associated proteins implicated in invasion and metastasis. Phosphorylation of paxillin by Src family kinases, which regulates adhesion turnover, is similarly enhanced in the metastatic and basal-like tumor cells, fostered by a stiff matrix, and critical for tumor cell invasion in our assays. Bioinformatics reveals an unappreciated relationship between Src kinases, paxillin, and survival of breast cancer patients. Thus adoption of the basal-like adhesion phenotype may favor the recruitment of molecules that facilitate tumor metastasis to integrin-based adhesions. Analysis of the physical properties of tumor cells and integrin adhesion composition in biopsies may be predictive of patient outcome.


Asunto(s)
Adhesión Celular/fisiología , Integrinas/metabolismo , Paxillin/metabolismo , Mama/metabolismo , Neoplasias de la Mama/patología , Línea Celular Tumoral , Matriz Extracelular/metabolismo , Femenino , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Humanos , Metástasis de la Neoplasia/fisiopatología , Fosforilación , Transducción de Señal
3.
J Biotechnol ; 193: 66-9, 2015 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-25435379

RESUMEN

Extracellular matrix (ECM) structure, composition, and stiffness have profound effects on tissue development and pathologies such as cardiovascular disease and cancer. Accordingly, a variety of synthetic hydrogel systems have been designed to study the impact of ECM composition, density, mechanics, and topography on cell and tissue phenotype. However, these synthetic systems fail to accurately recapitulate the biological properties and structure of the native tissue ECM. Natural three dimensional (3D) ECM hydrogels, such as collagen or hyaluronic acid, feature many of the chemical and physical properties of tissue, yet, these systems have limitations including the inability to independently control biophysical properties such as stiffness and pore size. Here, we present a 3D tension bioreactor system that permits precise mechanical tuning of collagen hydrogel stiffness, while maintaining consistent composition and pore size. We achieve this by mechanically loading collagen hydrogels covalently-conjugated to a polydimethylsiloxane (PDMS) membrane to induce hydrogel stiffening. We validated the biological application of this system with oncogenically transformed mammary epithelial cell organoids embedded in a 3D collagen I hydrogel, either uniformly stiffened or calibrated to create a gradient of ECM stiffening, to visually demonstrate the impact of ECM stiffening on transformation and tumor cell invasion. As such, this bioreactor presents the first tunable 3D natural hydrogel system that is capable of independently assessing the role of ECM stiffness on tissue phenotype.


Asunto(s)
Reactores Biológicos , Técnicas de Cultivo de Célula/instrumentación , Colágeno/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Neoplasias/química , Técnicas de Cultivo de Tejidos/instrumentación , Animales , Línea Celular Tumoral , Elasticidad , Matriz Extracelular/química , Mamíferos , Organoides/citología , Porosidad
4.
Cancer Res ; 74(17): 4597-611, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25183785

RESUMEN

Extracellular matrix (ECM) stiffness induces focal adhesion assembly to drive malignant transformation and tumor metastasis. Nevertheless, how force alters focal adhesions to promote tumor progression remains unclear. Here, we explored the role of the focal adhesion protein vinculin, a force-activated mechanotransducer, in mammary epithelial tissue transformation and invasion. We found that ECM stiffness stabilizes the assembly of a vinculin-talin-actin scaffolding complex that facilitates PI3K-mediated phosphatidylinositol (3,4,5)-triphosphate phosphorylation. Using defined two- and three-dimensional matrices, a mouse model of mammary tumorigenesis with vinculin mutants, and a novel super resolution imaging approach, we established that ECM stiffness, per se, promotes the malignant progression of a mammary epithelium by activating and stabilizing vinculin and enhancing Akt signaling at focal adhesions. Our studies also revealed that vinculin strongly colocalizes with activated Akt at the invasive border of human breast tumors, where the ECM is stiffest, and we detected elevated mechanosignaling. Thus, ECM stiffness could induce tumor progression by promoting the assembly of signaling scaffolds, a conclusion underscored by the significant association we observed between highly expressed focal adhesion plaque proteins and malignant transformation across multiple types of solid cancer. See all articles in this Cancer Research section, "Physics in Cancer Research."


Asunto(s)
Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Vinculina/metabolismo , Actinas/metabolismo , Animales , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Carcinogénesis/metabolismo , Carcinogénesis/patología , Adhesión Celular/fisiología , Línea Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Progresión de la Enfermedad , Epitelio/metabolismo , Epitelio/patología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Adhesiones Focales/metabolismo , Humanos , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/patología , Glándulas Mamarias Humanas/metabolismo , Glándulas Mamarias Humanas/patología , Ratones , Fosforilación/fisiología , Talina/metabolismo
5.
Nature ; 511(7509): 319-25, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25030168

RESUMEN

Malignancy is associated with altered expression of glycans and glycoproteins that contribute to the cellular glycocalyx. We constructed a glycoprotein expression signature, which revealed that metastatic tumours upregulate expression of bulky glycoproteins. A computational model predicted that these glycoproteins would influence transmembrane receptor spatial organization and function. We tested this prediction by investigating whether bulky glycoproteins in the glycocalyx promote a tumour phenotype in human cells by increasing integrin adhesion and signalling. Our data revealed that a bulky glycocalyx facilitates integrin clustering by funnelling active integrins into adhesions and altering integrin state by applying tension to matrix-bound integrins, independent of actomyosin contractility. Expression of large tumour-associated glycoproteins in non-transformed mammary cells promoted focal adhesion assembly and facilitated integrin-dependent growth factor signalling to support cell growth and survival. Clinical studies revealed that large glycoproteins are abundantly expressed on circulating tumour cells from patients with advanced disease. Thus, a bulky glycocalyx is a feature of tumour cells that could foster metastasis by mechanically enhancing cell-surface receptor function.


Asunto(s)
Glicocálix/metabolismo , Glicoproteínas/metabolismo , Integrinas/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Animales , Mama/citología , Mama/metabolismo , Mama/patología , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Fibroblastos , Glicocálix/química , Humanos , Proteínas Inmovilizadas/química , Proteínas Inmovilizadas/metabolismo , Integrinas/química , Ratones , Terapia Molecular Dirigida , Mucina-1/metabolismo , Metástasis de la Neoplasia/patología , Células Neoplásicas Circulantes , Unión Proteica , Receptores de Superficie Celular
6.
Proc Natl Acad Sci U S A ; 111(2): 658-63, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24379367

RESUMEN

Cells and multicellular structures can mechanically align and concentrate fibers in their ECM environment and can sense and respond to mechanical cues by differentiating, branching, or disorganizing. Here we show that mammary acini with compromised structural integrity can interconnect by forming long collagen lines. These collagen lines then coordinate and accelerate transition to an invasive phenotype. Interacting acini begin to disorganize within 12.5 ± 4.7 h in a spatially coordinated manner, whereas acini that do not interact mechanically with other acini disorganize more slowly (in 21.8 ± 4.1 h) and to a lesser extent (P < 0.0001). When the directed mechanical connections between acini were cut with a laser, the acini reverted to a slowly disorganizing phenotype. When acini were fully mechanically isolated from other acini and also from the bulk gel by box-cuts with a side length <900 µm, transition to an invasive phenotype was blocked in 20 of 20 experiments, regardless of waiting time. Thus, pairs or groups of mammary acini can interact mechanically over long distances through the collagen matrix, and these directed mechanical interactions facilitate transition to an invasive phenotype.


Asunto(s)
Células Acinares/patología , Neoplasias de la Mama/fisiopatología , Comunicación Celular/fisiología , Glándulas Mamarias Humanas/citología , Células Acinares/fisiología , Células Acinares/ultraestructura , Línea Celular Tumoral , Separación Celular , Colágeno , Escherichia coli , Femenino , Humanos , Estimación de Kaplan-Meier , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Microscopía Fluorescente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...