Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 45
1.
PLoS One ; 19(4): e0302436, 2024.
Article En | MEDLINE | ID: mdl-38662786

Severe cases of COVID-19 are characterized by development of acute respiratory distress syndrome (ARDS). Water accumulation in the lungs is thought to occur as consequence of an exaggerated inflammatory response. A possible mechanism could involve decreased activity of the epithelial Na+ channel, ENaC, expressed in type II pneumocytes. Reduced transepithelial Na+ reabsorption could contribute to lung edema due to reduced alveolar fluid clearance. This hypothesis is based on the observation of the presence of a novel furin cleavage site in the S protein of SARS-CoV-2 that is identical to the furin cleavage site present in the alpha subunit of ENaC. Proteolytic processing of αENaC by furin-like proteases is essential for channel activity. Thus, competition between S protein and αENaC for furin-mediated cleavage in SARS-CoV-2-infected cells may negatively affect channel activity. Here we present experimental evidence showing that coexpression of the S protein with ENaC in a cellular model reduces channel activity. In addition, we show that bidirectional competition for cleavage by furin-like proteases occurs between 〈ENaC and S protein. In transgenic mice sensitive to lethal SARS-CoV-2, however, a significant decrease in gamma ENaC expression was not observed by immunostaining of lungs infected as shown by SARS-CoV2 nucleoprotein staining.


COVID-19 , Epithelial Sodium Channels , Furin , Mice, Transgenic , Proteolysis , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Epithelial Sodium Channels/metabolism , Animals , Humans , Mice , Furin/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/metabolism , COVID-19/virology , Alveolar Epithelial Cells/metabolism , Alveolar Epithelial Cells/virology , Lung/metabolism , Lung/virology , Lung/pathology , HEK293 Cells
2.
Article En | MEDLINE | ID: mdl-38269409

KS-WNK1 is an isoform of WNK1 kinase that is predominantly found in the distal convoluted tubule of the kidney. The precise physiological function of KS-WNK1 remains unclear. Some studies suggest that it could play a role in regulating potassium renal excretion by modulating the activity of the Na+-Cl- cotransporter (NCC). However, changes in the potassium diet from normal to high failed to reveal a role for KS-WNK1, but under a normal potassium diet, the expression of KS-WNK1 is negligible. It is only detectable when mice are exposed to a low potassium diet. In this study, we investigated the role of KS-WNK1 in regulating potassium excretion under extreme changes in potassium intake. After following a zero-potassium diet (0KD) for 10 days, KS-WNK1-/- mice had lower plasma levels of K+ and Cl-, while exhibiting higher urinary excretion of Na+, Cl-, and K+ compared to KS-WNK1+/+ mice. After 10 days of 0KD or normal-potassium diet (NKD), all mice were challenged with a high-potassium diet (HKD). Plasma K+ levels markedly increased after the HKD challenge only in mice previously fed with 0KD, regardless of genotype. KSWNK1+/+ mice adapt better to HKD-challenge than KS-WNK1-/- mice after a potassium-retaining state. The difference in the pNCC/NCC ratio between KS-WNK1+/+ and KS-WNK1-/- mice after 0KD and HKD indicates a role for KS-WNK1 in both, NCC phosphorylation and dephosphorylation. These observations show that KS-WNK1 helps the DCT to respond to extreme changes in potassium intake, such as those occurring in wildlife.

3.
Am J Physiol Renal Physiol ; 326(2): F285-F299, 2024 02 01.
Article En | MEDLINE | ID: mdl-38096266

Vasopressin regulates water homeostasis via the V2 receptor in the kidney at least in part through protein kinase A (PKA) activation. Vasopressin, through an unknown pathway, upregulates the activity and phosphorylation of Na+-Cl- cotransporter (NCC) and Na+-K+-2Cl- cotransporter 2 (NKCC2) by Ste20-related proline/alanine-rich kinase (SPAK) and oxidative stress-responsive kinase 1 (OSR1), which are regulated by the with-no-lysine kinase (WNK) family. Phosphorylation of WNK4 at PKA consensus motifs may be involved. Inhibitor 1 (I1), a protein phosphatase 1 (PP1) inhibitor, may also play a role. In human embryonic kidney (HEK)-293 cells, we assessed the phosphorylation of WNK4, SPAK, NCC, or NKCC2 in response to forskolin or desmopressin. WNK4 and cotransporter phosphorylation were studied in desmopressin-infused WNK4-/- mice and in tubule suspensions. In HEK-293 cells, only wild-type WNK4 but not WNK1, WNK3, or a WNK4 mutant lacking PKA phosphorylation motifs could upregulate SPAK or cotransporter phosphorylation in response to forskolin or desmopressin. I1 transfection maximized SPAK phosphorylation in response to forskolin in the presence of WNK4 but not of mutant WNK4 lacking PP1 regulation. We observed direct PP1 regulation of NKCC2 dephosphorylation but not of NCC or SPAK in the absence of WNK4. WNK4-/- mice with desmopressin treatment did not increase SPAK/OSR1, NCC, or NKCC2 phosphorylation. In stimulated tubule suspensions from WNK4-/- mice, upregulation of pNKCC2 was reduced, whereas upregulation of SPAK phosphorylation was absent. These findings suggest that WNK4 is a central node in which kinase and phosphatase signaling converge to connect cAMP signaling to the SPAK/OSR1-NCC/NKCC2 pathway.NEW & NOTEWORTHY With-no-lysine kinases regulate the phosphorylation and activity of the Na+-Cl- and Na+-K+-2Cl- cotransporters. This pathway is modulated by arginine vasopressin (AVP). However, the link between AVP and WNK signaling remains unknown. Here, we show that AVP activates WNK4 through increased phosphorylation at putative protein kinase A-regulated sites and decreases its dephosphorylation by protein phosphatase 1. This work increases our understanding of the signaling pathways mediating AVP actions in the kidney.


Arginine Vasopressin , Protein Serine-Threonine Kinases , Mice , Humans , Animals , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , HEK293 Cells , Arginine Vasopressin/metabolism , K Cl- Cotransporters , Deamino Arginine Vasopressin , Colforsin , Protein Phosphatase 1/metabolism , Kidney/metabolism , Solute Carrier Family 12, Member 3/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism
4.
Am J Physiol Renal Physiol ; 326(1): F39-F56, 2024 01 01.
Article En | MEDLINE | ID: mdl-37881876

The with-no-lysine kinase 4 (WNK4)-sterile 20/SPS-1-related proline/alanine-rich kinase (SPAK)/oxidative stress-responsive kinase 1 (OSR1) pathway mediates activating phosphorylation of the furosemide-sensitive Na+-K+-2Cl- cotransporter (NKCC2) and the thiazide-sensitive NaCl cotransporter (NCC). The commonly used pT96/pT101-pNKCC2 antibody cross-reacts with pT53-NCC in mice on the C57BL/6 background due to a five amino acid deletion. We generated a new C57BL/6-specific pNKCC2 antibody (anti-pT96-NKCC2) and tested the hypothesis that the WNK4-SPAK/OSR1 pathway strongly regulates the phosphorylation of NCC but not NKCC2. In C57BL/6 mice, anti-pT96-NKCC2 detected pNKCC2 and did not cross-react with NCC. Abundances of pT96-NKCC2 and pT53-NCC were evaluated in Wnk4-/-, Osr1-/-, Spak-/-, and Osr1-/-/Spak-/- mice and in several models of the disease familial hyperkalemic hypertension (FHHt) in which the CUL3-KLHL3 ubiquitin ligase complex that promotes WNK4 degradation is dysregulated (Cul3+/-/Δ9, Klhl3-/-, and Klhl3R528H/R528H). All mice were on the C57BL/6 background. In Wnk4-/- mice, pT53-NCC was almost absent but pT96-NKCC2 was only slightly lower. pT53-NCC was almost absent in Spak-/- and Osr1-/-/Spak-/- mice, but pT96-NKCC2 abundance did not differ from controls. pT96-NKCC2/total NKCC2 was slightly lower in Osr1-/- and Osr1-/-/Spak-/- mice. WNK4 expression colocalized not only with NCC but also with NKCC2 in Klhl3-/- mice, but pT96-NKCC2 abundance was unchanged. Consistent with this, furosemide-induced urinary Na+ excretion following thiazide treatment was similar between Klhl3-/- and controls. pT96-NKCC2 abundance was also unchanged in the other FHHt mouse models. Our data show that disruption of the WNK4-SPAK/OSR1 pathway only mildly affects NKCC2 phosphorylation, suggesting a role for other kinases in NKCC2 activation. In FHHt models NKCC2 phosphorylation is unchanged despite higher WNK4 abundance, explaining the thiazide sensitivity of FHHt.NEW & NOTEWORTHY The renal cation cotransporters NCC and NKCC2 are activated following phosphorylation mediated by the WNK4-SPAK/OSR1 pathway. While disruption of this pathway strongly affects NCC activity, effects on NKCC2 activity are unclear since the commonly used phospho-NKCC2 antibody was recently reported to cross-react with phospho-NCC in mice on the C57BL/6 background. Using a new phospho-NKCC2 antibody specific for C57BL/6, we show that inhibition or activation of the WNK4-SPAK/OSR1 pathway in mice only mildly affects NKCC2 phosphorylation.


Protein Serine-Threonine Kinases , Pseudohypoaldosteronism , Animals , Mice , Furosemide , Mice, Inbred C57BL , Phosphorylation , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Pseudohypoaldosteronism/genetics , Pseudohypoaldosteronism/metabolism , Solute Carrier Family 12, Member 3/genetics , Solute Carrier Family 12, Member 3/metabolism , Thiazides
5.
Curr Opin Nephrol Hypertens ; 32(5): 476-481, 2023 09 01.
Article En | MEDLINE | ID: mdl-37530087

PURPOSE OF REVIEW: An increasing amount of evidence points out to a role for the thiazide-sensitive Na+:Cl- cotransporter, NCC, in the blood pressure alterations observed in conditions of pathologically high or pathologically low aldosterone. Here, we briefly review this evidence that is changing our perception of the pathophysiology of primary aldosteronism. RECENT FINDINGS: Although initially NCC was thought to be a direct target of aldosterone, more recent evidence suggests that NCC is only indirectly regulated by aldosterone, at least in a chronic setting. Aldosterone-induced changes in plasma K+ concentration that are prompted by the modulation of K+ secretion in principal cells of the connecting tubule and collecting duct are actually responsible for the modulation of NCC in conditions of altered aldosterone levels. A mounting amount of evidence suggests that this indirect effect of aldosterone on NCC may be key to produce the blood pressure alterations observed in aldosterone excess or aldosterone deficit. Finally, recent insights into the molecular pathways involved in NCC modulation by K+ are briefly reviewed. SUMMARY: The evidence reviewed here suggests that correction of K+ alterations in patients with hyper or hypoaldosteronism may substantially affect blood pressure levels. Mechanistically, this may be related to the K+-mediated modulation of NCC.


Hyperaldosteronism , Hypertension , Humans , Aldosterone/metabolism , Phosphorylation , Hypertension/etiology , Hypertension/metabolism , Blood Pressure , Hyperaldosteronism/complications , Hyperaldosteronism/metabolism , Solute Carrier Family 12, Member 3/metabolism , Kidney Tubules, Distal/metabolism
6.
Front Physiol ; 14: 1100522, 2023.
Article En | MEDLINE | ID: mdl-36875042

The activity of the Na+-Cl- cotransporter (NCC) in the distal convoluted tubule (DCT) is finely tuned by phosphorylation networks involving serine/threonine kinases and phosphatases. While much attention has been paid to the With-No-lysine (K) kinase (WNK)- STE20-related Proline Alanine rich Kinase (SPAK)/Oxidative Stress Responsive kinase 1 (OSR1) signaling pathway, there remain many unanswered questions regarding phosphatase-mediated modulation of NCC and its interactors. The phosphatases shown to regulate NCC's activity, directly or indirectly, are protein phosphatase 1 (PP1), protein phosphatase 2A (PP2A), calcineurin (CN), and protein phosphatase 4 (PP4). PP1 has been suggested to directly dephosphorylate WNK4, SPAK, and NCC. This phosphatase increases its abundance and activity when extracellular K+ is increased, which leads to distinct inhibitory mechanisms towards NCC. Inhibitor-1 (I1), oppositely, inhibits PP1 when phosphorylated by protein kinase A (PKA). CN inhibitors, like tacrolimus and cyclosporin A, increase NCC phosphorylation, giving an explanation to the Familial Hyperkalemic Hypertension-like syndrome that affects some patients treated with these drugs. CN inhibitors can prevent high K+-induced dephosphorylation of NCC. CN can also dephosphorylate and activate Kelch-like protein 3 (KLHL3), thus decreasing WNK abundance. PP2A and PP4 have been shown in in vitro models to regulate NCC or its upstream activators. However, no studies in native kidneys or tubules have been performed to test their physiological role in NCC regulation. This review focuses on these dephosphorylation mediators and the transduction mechanisms possibly involved in physiological states that require of the modulation of the dephosphorylation rate of NCC.

7.
J Am Soc Nephrol ; 34(1): 55-72, 2023 01 01.
Article En | MEDLINE | ID: mdl-36288902

BACKGROUND: The calcium-sensing receptor (CaSR) in the distal convoluted tubule (DCT) activates the NaCl cotransporter (NCC). Glucose acts as a positive allosteric modulator of the CaSR. Under physiologic conditions, no glucose is delivered to the DCT, and fructose delivery depends on consumption. We hypothesized that glucose/fructose delivery to the DCT modulates the CaSR in a positive allosteric way, activating the WNK4-SPAK-NCC pathway and thus increasing salt retention. METHODS: We evaluated the effect of glucose/fructose arrival to the distal nephron on the CaSR-WNK4-SPAK-NCC pathway using HEK-293 cells, C57BL/6 and WNK4-knockout mice, ex vivo perfused kidneys, and healthy humans. RESULTS: HEK-293 cells exposed to glucose/fructose increased SPAK phosphorylation in a WNK4- and CaSR-dependent manner. C57BL/6 mice exposed to fructose or a single dose of dapagliflozin to induce transient glycosuria showed increased activity of the WNK4-SPAK-NCC pathway. The calcilytic NPS2143 ameliorated this effect, which was not observed in WNK4-KO mice. C57BL/6 mice treated with fructose or dapagliflozin showed markedly increased natriuresis after thiazide challenge. Ex vivo rat kidney perfused with glucose above the physiologic threshold levels for proximal reabsorption showed increased NCC and SPAK phosphorylation. NPS2143 prevented this effect. In healthy volunteers, cinacalcet administration, fructose intake, or a single dose of dapagliflozin increased SPAK and NCC phosphorylation in urinary extracellular vesicles. CONCLUSIONS: Glycosuria or fructosuria was associated with increased NCC, SPAK, and WNK4 phosphorylation in a CaSR-dependent manner.


Glycosuria , Sodium Chloride Symporters , Humans , Mice , Animals , Sodium Chloride Symporters/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptors, Calcium-Sensing/metabolism , Glucose/metabolism , HEK293 Cells , Mice, Inbred C57BL , Phosphorylation , Solute Carrier Family 12, Member 3/metabolism , Kidney Tubules, Distal/metabolism , Mice, Knockout , Glycosuria/metabolism
8.
Kidney Int ; 102(6): 1247-1258, 2022 12.
Article En | MEDLINE | ID: mdl-36228680

The mammalian distal nephron is a target of highly effective antihypertensive drugs. Genetic variants that alter its transport activity are also inherited causes of high or low blood pressure, clearly establishing its central role in human blood pressure regulation. Much has been learned during the past 25 years about salt transport along this nephron segment, spurred by the cloning of major transport proteins and the discovery of disease-causing genetic variants. Recognition is increasing that substantial cellular and segmental heterogeneity is present along this segment, with electroneutral sodium transport dominating more proximal segments and electrogenic sodium transport dominating more distal segments. Coupled with recent insights into factors that modulate transport along these segments, we now understand one important mechanism by which dietary potassium intake influences sodium excretion and blood pressure. This finding has solved the aldosterone paradox, by demonstrating how aldosterone can be both kaliuretic, when plasma potassium is elevated, and anti-natriuretic, when extracellular fluid volume is low. However, what also has become clear is that aldosterone itself only stimulates a portion of the mineralocorticoid receptors along this segment, with the others being activated by glucocorticoid hormones instead. These recent insights provide an increasingly clear picture of how this short nephron segment contributes to blood pressure homeostasis and have important implications for hypertension prevention and treatment.


Aldosterone , Hypertension , Animals , Humans , Blood Pressure , Aldosterone/metabolism , Nephrons/metabolism , Sodium/metabolism , Mammals/metabolism
9.
Kidney Int ; 102(5): 1030-1041, 2022 11.
Article En | MEDLINE | ID: mdl-35870644

Low potassium intake activates the kidney sodium-chloride cotransporter (NCC) whose phosphorylation and activity depend on the With-No-Lysine kinase 4 (WNK4) that is inhibited by chloride binding to its kinase domain. Low extracellular potassium activates NCC by decreasing intracellular chloride thereby promoting chloride dissociation from WNK4 where residue L319 of WNK4 participates in chloride coordination. Since the WNK4-L319F mutant is constitutively active and chloride-insensitive in vitro, we generated mice harboring this mutation that displayed slightly increased phosphorylated NCC and mild hyperkalemia when on a 129/sv genetic background. On a low potassium diet, upregulation of phosphorylated NCC was observed, suggesting that in addition to chloride sensing by WNK4, other mechanisms participate which may include modulation of WNK4 activity and degradation by phosphorylation of the RRxS motif in regulatory domains present in WNK4 and KLHL3, respectively. Increased levels of WNK4 and kidney-specific WNK1 and phospho-WNK4-RRxS were observed in wild-type and WNK4L319F/L319F mice on a low potassium diet. Decreased extracellular potassium promoted WNK4-RRxS phosphorylation in vitro and ex vivo as well. These effects might be secondary to intracellular chloride depletion, as reduction of intracellular chloride in HEK293 cells increased phospho-WNK4-RRxS. Phospho-WNK4-RRxS levels were increased in mice lacking the Kir5.1 potassium channel, which presumably have decreased distal convoluted tubule intracellular chloride. Similarly, phospho-KLHL3 was modulated by changes in intracellular chloride in HEK293 cells. Thus, our data suggest that multiple chloride-regulated mechanisms are responsible for NCC upregulation by low extracellular potassium.


Hypokalemia , Sodium Chloride Symporters , Animals , Humans , Mice , Chlorides/metabolism , HEK293 Cells , Hypokalemia/genetics , Hypokalemia/metabolism , Kidney Tubules, Distal/metabolism , Phosphorylation , Potassium/metabolism , Potassium Channels/metabolism , Protein Serine-Threonine Kinases/genetics , Sodium Chloride Symporters/metabolism
10.
Curr Opin Nephrol Hypertens ; 31(5): 471-478, 2022 09 01.
Article En | MEDLINE | ID: mdl-35894282

PURPOSE OF REVIEW: The aim of this manuscript was to review recent evidence uncovering the roles of the With No lysine (K) kinase 1 (WNK1) in the kidney. RECENT FINDINGS: Analyses of microdissected mouse nephron segments have revealed the abundance of long-WNK1 and kidney-specific-WNK1 transcripts in different segments. The low levels of L-WNK1 transcripts in the distal convoluted tubule (DCT) stand out and support functional evidence on the lack of L-WNK1 activity in this segment. The recent description of familial hyperkalaemic hypertension (FHHt)-causative mutations affecting the acidic domain of WNK1 supports the notion that KS-WNK1 activates the Na+:Cl- cotransporter NCC. The high sensitivity of KS-WNK1 to KLHL3-targeted degradation and the low levels of L-WNK1 in the DCT, led to propose that this type of FHHt is mainly due to increased KS-WNK1 protein in the DCT. The observation that KS-WNK1 renal protein expression is induced by low K+ diet and recent reassessment of the phenotype of KS-WNK1-/- mice suggested that KS-WNK1 may be necessary to achieve maximal NCC activation under this condition. Evidences on the regulation of other renal transport proteins by WNK1 are also summarized. SUMMARY: The diversity of WNK1 transcripts in the kidney has complicated the interpretation of experimental data. Integration of experimental data with the knowledge of isoform abundance in renal cell types is necessary in future studies about WNK1 function in the kidney.


Protein Serine-Threonine Kinases , Pseudohypoaldosteronism , WNK Lysine-Deficient Protein Kinase 1 , Animals , Humans , Kidney/metabolism , Kidney Tubules, Distal/metabolism , Mice , Minor Histocompatibility Antigens/genetics , Minor Histocompatibility Antigens/metabolism , Protein Serine-Threonine Kinases/genetics , Solute Carrier Family 12, Member 3/metabolism , WNK Lysine-Deficient Protein Kinase 1/genetics , WNK Lysine-Deficient Protein Kinase 1/metabolism
11.
Biochem J ; 479(5): 661-675, 2022 03 18.
Article En | MEDLINE | ID: mdl-35179207

The BTB-Kelch protein KLHL3 is a Cullin3-dependent E3 ligase that mediates the ubiquitin-dependent degradation of kinases WNK1-4 to control blood pressure and cell volume. A crystal structure of KLHL3 has defined its binding to an acidic degron motif containing a PXXP sequence that is strictly conserved in WNK1, WNK2 and WNK4. Mutations in the second proline abrograte the interaction causing the hypertension syndrome pseudohypoaldosteronism type II. WNK3 shows a diverged degron motif containing four amino acid substitutions that remove the PXXP motif raising questions as to the mechanism of its binding. To understand this atypical interaction, we determined the crystal structure of the KLHL3 Kelch domain in complex with a WNK3 peptide. The electron density enabled the complete 11-mer WNK-family degron motif to be traced for the first time revealing several conserved features not captured in previous work, including additional salt bridge and hydrogen bond interactions. Overall, the WNK3 peptide adopted a conserved binding pose except for a subtle shift to accommodate bulkier amino acid substitutions at the binding interface. At the centre, the second proline was substituted by WNK3 Thr541, providing a unique phosphorylatable residue among the WNK-family degrons. Fluorescence polarisation and structural modelling experiments revealed that its phosphorylation would abrogate the KLHL3 interaction similarly to hypertension-causing mutations. Together, these data reveal how the KLHL3 Kelch domain can accommodate the binding of multiple WNK isoforms and highlight a potential regulatory mechanism for the recruitment of WNK3.


Hypertension , Ubiquitin-Protein Ligases , Adaptor Proteins, Signal Transducing/genetics , Humans , Microfilament Proteins/genetics , Phosphorylation , Proline , Protein Serine-Threonine Kinases/genetics , Ubiquitin
12.
FASEB J ; 36(3): e22190, 2022 03.
Article En | MEDLINE | ID: mdl-35147994

We demonstrated that serpinA3c/k relocates from the cytoplasm to the apical tubular membrane (ATM) in chronic kidney disease (CKD), suggesting its secretion in luminal space in pathophysiological contexts. Here, we studied serpinA3c/k expression and secretion under different stressful conditions in vitro and in vivo. HEK-293 cells were transfected with a FLAG-tagged serpinA3c/k clone and exposed to H2 O2 or starvation. Both stressors induced serpinA3c/k secretion but with a higher molecular weight. Glycanase treatment established that serpinA3c/k is glycosylated. Site-directed mutagenesis for each of the four glycosylation sites was performed. During cellular stress, serpinA3c/k secretion increased with each mutant except in the quadruple mutant. In rats and patients suffering acute kidney injury (AKI), an atypical urinary serpinA3c/k excretion (uSerpinA3c/k) was observed. In rats with AKI, the greater the induced kidney damage, the greater the uSerpinA3 c/k, together with relocation toward ATM. Our findings show that: (1) serpinA3c/k is glycosylated and secreted, (2) serpinA3c/k secretion increases during cellular stress, (3) its appearance in urine reveals a pathophysiological state, and (4) urinary serpinA3 excretion could become a potential biomarker for AKI.


Acute Kidney Injury/metabolism , Stress, Physiological , alpha 1-Antichymotrypsin/metabolism , Acute Kidney Injury/urine , Animals , Glycosylation , HEK293 Cells , Humans , Male , Mutation , Rats , alpha 1-Antichymotrypsin/genetics , alpha 1-Antichymotrypsin/urine
13.
EMBO Mol Med ; 14(2): e14273, 2022 02 07.
Article En | MEDLINE | ID: mdl-34927382

Epidemiological and clinical observations have shown that potassium ingestion is inversely correlated with arterial hypertension prevalence and cardiovascular mortality. The higher the dietary potassium, the lower the blood pressure and mortality. This phenomenon is explained, at least in part, by the interaction between salt reabsorption in the distal convoluted tubule (DCT) and potassium secretion in the connecting tubule/collecting duct of the mammalian nephron: In order to achieve adequate K+ secretion levels under certain conditions, salt reabsorption in the DCT must be reduced. Because salt handling by the kidney constitutes the basis for the long-term regulation of blood pressure, losing salt prevents hypertension. Here, we discuss how the study of inherited diseases in which salt reabsorption in the DCT is affected has revealed the molecular players, including membrane transporters and channels, kinases, and ubiquitin ligases that form the potassium sensing mechanism of the DCT and the processes through which the consequent adjustments in salt reabsorption are achieved.


Hypertension , Kidney Tubules, Distal , Animals , Blood Pressure , Homeostasis , Potassium
14.
Sci Rep ; 11(1): 8769, 2021 04 22.
Article En | MEDLINE | ID: mdl-33888767

Chronic hypoxia is a major contributor to Chronic Kidney Disease (CKD) after Acute Kidney Injury (AKI). However, the temporal relation between the acute insult and maladaptive renal response to hypoxia remains unclear. In this study, we analyzed the time-course of renal hemodynamics, oxidative stress, inflammation, and fibrosis, as well as epigenetic modifications, with focus on HIF1α/VEGF signaling, in the AKI to CKD transition. Sham-operated, right nephrectomy (UNx), and UNx plus renal ischemia (IR + UNx) groups of rats were included and studied at 1, 2, 3, or 4 months. The IR + UNx group developed CKD characterized by progressive proteinuria, renal dysfunction, tubular proliferation, and fibrosis. At first month post-ischemia, there was a twofold significant increase in oxidative stress and reduction in global DNA methylation that was maintained throughout the study. Hif1α and Vegfa expression were depressed in the first and second-months post-ischemia, and then Hif1α but not Vegfa expression was recovered. Interestingly, hypermethylation of the Vegfa promoter gene at the HIF1α binding site was found, since early stages of the CKD progression. Our findings suggest that renal hypoperfusion, inefficient hypoxic response, increased oxidative stress, DNA hypomethylation, and, Vegfa promoter gene hypermethylation at HIF1α binding site, are early determinants of AKI-to-CKD transition.


DNA Methylation , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Kidney/blood supply , Promoter Regions, Genetic , Renal Insufficiency, Chronic/pathology , Vascular Endothelial Growth Factor A/genetics , Acute Kidney Injury/pathology , Animals , Disease Progression , Ischemia/pathology , Male , Oxidative Stress , Rats , Rats, Wistar , Renal Insufficiency, Chronic/genetics , Renal Insufficiency, Chronic/metabolism
15.
EMBO Rep ; 22(5): e50766, 2021 05 05.
Article En | MEDLINE | ID: mdl-33749979

SIRT7 is a NAD+ -dependent deacetylase that controls important aspects of metabolism, cancer, and bone formation. However, the molecular targets and functions of SIRT7 in the kidney are currently unknown. In silico analysis of kidney transcripts of the BXD murine genetic reference population revealed a positive correlation between Sirt7 and Slc12a7 mRNA expression, suggesting a link between the corresponding proteins that these transcripts encode, SIRT7, and the K-Cl cotransporter KCC4, respectively. Here, we find that protein levels and activity of heterologously expressed KCC4 are significantly modulated depending on its acetylation status in Xenopus laevis oocytes. Moreover, SIRT7 interacts with KCC4 in a NAD+ -dependent manner and increases its stability and activity in HEK293 cells. Interestingly, metabolic acidosis increases SIRT7 expression in kidney, as occurs with KCC4. In contrast, total SIRT7-deficient mice present lower KCC4 expression and an exacerbated metabolic acidosis than wild-type mice during an ammonium chloride challenge. Altogether, our data suggest that SIRT7 interacts with, stabilizes and modulates KCC4 activity through deacetylation, and reveals a novel role for SIRT7 in renal physiology.


Sirtuins , Symporters , Acetylation , Animals , HEK293 Cells , Humans , Kidney , Mice , Sirtuins/genetics , Sirtuins/metabolism , Symporters/genetics , Symporters/metabolism , K Cl- Cotransporters
16.
Am J Physiol Renal Physiol ; 320(5): F734-F747, 2021 05 01.
Article En | MEDLINE | ID: mdl-33682442

The physiological role of the shorter isoform of with no lysine kinase (WNK)1 that is exclusively expressed in the kidney (KS-WNK1), with particular abundance in the distal convoluted tubule, remains elusive. KS-WNK1, despite lacking the kinase domain, is nevertheless capable of stimulating the NaCl cotransporter, apparently through activation of WNK4. It has recently been shown that a less severe form of familial hyperkalemic hypertension featuring only hyperkalemia is caused by missense mutations in the WNK1 acidic domain that preferentially affect cullin 3 (CUL3)-Kelch-like protein 3 (KLHL3) E3-induced degradation of KS-WNK1 rather than that of full-length WNK1. Here, we show that full-length WNK1 is indeed less impacted by the CUL3-KLHL3 E3 ligase complex compared with KS-WNK1. We demonstrated that the unique 30-amino acid NH2-terminal fragment of KS-WNK1 is essential for its activating effect on the NaCl cotransporter and recognition by KLHL3. We identified specific amino acid residues in this region critical for the functional effect of KS-WNK1 and KLHL3 sensitivity. To further explore this, we generated KLHL3-R528H knockin mice that mimic human mutations causing familial hyperkalemic hypertension. These mice revealed that the KLHL3 mutation specifically increased expression of KS-WNK1 in the kidney. We also observed that in wild-type mice, the expression of KS-WNK1 was only detectable after exposure to a low-K+ diet. These findings provide new insights into the regulation and function of KS-WNK1 by the CUL3-KLHL3 complex in the distal convoluted tubule and indicate that this pathway is regulated by dietary K+ levels.NEW & NOTEWORTHY In this work, we demonstrated that the kidney-specific isoform of with no lysine kinase 1 (KS-WNK1) in the kidney is modulated by dietary K+ and activity of the ubiquitin ligase protein Kelch-like protein 3. We analyzed the role of different amino acid residues of KS-WNK1 in its activity against the NaCl cotransporter and sensitivity to Kelch-like protein 3.


Adaptor Proteins, Signal Transducing/metabolism , Kidney/enzymology , Microfilament Proteins/metabolism , Potassium, Dietary/metabolism , Pseudohypoaldosteronism/enzymology , WNK Lysine-Deficient Protein Kinase 1/metabolism , Adaptor Proteins, Signal Transducing/genetics , Animals , Cullin Proteins/metabolism , Enzyme Stability , Female , Kidney/physiopathology , Mice, Inbred C57BL , Mice, Transgenic , Microfilament Proteins/genetics , Mutation , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Proteolysis , Pseudohypoaldosteronism/genetics , Pseudohypoaldosteronism/physiopathology , Solute Carrier Family 12, Member 3/genetics , Solute Carrier Family 12, Member 3/metabolism , WNK Lysine-Deficient Protein Kinase 1/deficiency , WNK Lysine-Deficient Protein Kinase 1/genetics , Xenopus laevis
17.
Am J Physiol Renal Physiol ; 320(3): F378-F403, 2021 03 01.
Article En | MEDLINE | ID: mdl-33491560

With no lysine kinase-4 (WNK4) belongs to a serine-threonine kinase family characterized by the atypical positioning of its catalytic lysine. Despite the fact that WNK4 has been found in many tissues, the majority of its study has revolved around its function in the kidney, specifically as a positive regulator of the thiazide-sensitive NaCl cotransporter (NCC) in the distal convoluted tubule of the nephron. This is explained by the description of gain-of-function mutations in the gene encoding WNK4 that causes familial hyperkalemic hypertension. This disease is mainly driven by increased downstream activation of the Ste20/SPS1-related proline-alanine-rich kinase/oxidative stress responsive kinase-1-NCC pathway, which increases salt reabsorption in the distal convoluted tubule and indirectly impairs renal K+ secretion. Here, we review the large volume of information that has accumulated about different aspects of WNK4 function. We first review the knowledge on WNK4 structure and enumerate the functional domains and motifs that have been characterized. Then, we discuss WNK4 physiological functions based on the information obtained from in vitro studies and from a diverse set of genetically modified mouse models with altered WNK4 function. We then review in vitro and in vivo evidence on the different levels of regulation of WNK4. Finally, we go through the evidence that has suggested how different physiological conditions act through WNK4 to modulate NCC activity.


Nephrons/metabolism , Potassium/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptors, Drug/metabolism , Sodium Chloride Symporters/metabolism , Animals , Humans , Kidney Tubules, Distal/metabolism , Pseudohypoaldosteronism/metabolism
18.
Front Physiol ; 11: 585907, 2020.
Article En | MEDLINE | ID: mdl-33192599

The role of Cl- as an intracellular signaling ion has been increasingly recognized in recent years. One of the currently best described roles of Cl- in signaling is the modulation of the With-No-Lysine (K) (WNK) - STE20-Proline Alanine rich Kinase (SPAK)/Oxidative Stress Responsive Kinase 1 (OSR1) - Cation-Coupled Cl- Cotransporters (CCCs) cascade. Binding of a Cl- anion to the active site of WNK kinases directly modulates their activity, promoting their inhibition. WNK activation due to Cl- release from the binding site leads to phosphorylation and activation of SPAK/OSR1, which in turn phosphorylate the CCCs. Phosphorylation by WNKs-SPAK/OSR1 of the Na+-driven CCCs (mediating ions influx) promote their activation, whereas that of the K+-driven CCCs (mediating ions efflux) promote their inhibition. This results in net Cl- influx and feedback inhibition of WNK kinases. A wide variety of alterations to this pathway have been recognized as the cause of several human diseases, with manifestations in different systems. The understanding of WNK kinases as Cl- sensitive proteins has allowed us to better understand the mechanistic details of regulatory processes involved in diverse physiological phenomena that are reviewed here. These include cell volume regulation, potassium sensing and intracellular signaling in the renal distal convoluted tubule, and regulation of the neuronal response to the neurotransmitter GABA.

19.
Am J Physiol Cell Physiol ; 319(2): C371-C380, 2020 08 01.
Article En | MEDLINE | ID: mdl-32579473

Cation-coupled chloride cotransporters (CCC) play a role in modulating intracellular chloride concentration ([Cl-]i) and cell volume. Cell shrinkage and cell swelling are accompanied by an increase or decrease in [Cl-]i, respectively. Cell shrinkage and a decrease in [Cl-]i increase the activity of NKCCs (Na-K-Cl cotransporters: NKCC1, NKCC2, and Na-Cl) and inhibit the activity of KCCs (K-Cl cotransporters: KCC1 to KCC4), wheras cell swelling and an increase in [Cl-]i activate KCCs and inhibit NKCCs; thus, it is unlikely that the same kinase is responsible for both effects. WNK1 and WNK4 are chloride-sensitive kinases that modulate the activity of CCC in response to changes in [Cl-]i. Here, we showed that WNK3, another member of the serine-threonine kinase WNK family with known effects on CCC, is not sensitive to [Cl-]i but can be regulated by changes in extracellular tonicity. In contrast, WNK4 is highly sensitive to [Cl-]i but is not regulated by changes in cell volume. The activity of WNK3 toward NaCl cotransporter is not affected by eliminating the chloride-binding site of WNK3, further confirming that the kinase is not sensitive to chloride. Chimeric WNK3/WNK4 proteins were produced, and analysis of the chimeras suggests that sequences within the WNK's carboxy-terminal end may modulate the chloride affinity. We propose that WNK3 is a cell volume-sensitive kinase that translates changes in cell volume into phosphorylation of CCC.


Cell Size , Protein Serine-Threonine Kinases/genetics , Sodium Chloride Symporters/metabolism , Xenopus Proteins/genetics , Animals , Chlorides/chemistry , Chlorides/metabolism , Cytoplasm/chemistry , Cytoplasm/metabolism , Humans , Oocytes/chemistry , Oocytes/metabolism , Phosphorylation/genetics , Protein Serine-Threonine Kinases/metabolism , Sodium Chloride Symporters/chemistry , Xenopus/genetics , Xenopus/metabolism , Xenopus Proteins/metabolism , Xenopus laevis/genetics , Xenopus laevis/metabolism
20.
Curr Top Membr ; 83: 285-313, 2019.
Article En | MEDLINE | ID: mdl-31196607

It has been well documented that the amount of potassium in the diet is associated with blood pressure levels in the population: the higher the potassium consumption, the lower the blood pressure and the cardiovascular mortality. In the last few years certain mechanisms for potassium regulation of salt reabsorption in the kidney have been elucidated at the molecular level. In this work we discuss the evidence demonstrating the relationship between potassium intake and blood pressure levels in human populations and in animal models, as well as the experimental data that reveal the effects of potassium on transepithelial Na+ reabsorption in different nephron segments. We also discuss the physiological relevance of K+-induced natriuresis, and finally, we focus on the molecular mechanisms by which extracellular potassium modulates the activity of the renal NaCl cotransporter, which is the mechanism that has been best dissected so far.


Blood Pressure/drug effects , Diuretics/pharmacology , Potassium/pharmacology , Animals , Homeostasis/drug effects , Humans , Kidney/drug effects , Kidney/physiology
...