Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 147
Filtrar
1.
Int Dent J ; 2024 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-39245621

RESUMEN

INTRODUCTION AND AIMS: Periodontitis, the main cause of tooth loss in adults, is a public health concern; its incidence increases with age, and its prevalence increases with increasing life expectancy of the population. Innovative therapies such as cell therapy represent promising future solutions for guided tissue regeneration. However, these therapies may be associated with fears and mistrust from the general public. The aim of this study was to estimate the acceptability of an advanced therapy medicinal product combining allogeneic mesenchymal stromal cells from adipose tissue with a natural fibrin hydrogel in the treatment of periodontitis. METHODS: The methodology was based on a qualitative study conducted through semi-structured interviews with patients followed for periodontitis in the Oral Medicine Department of the Toulouse University Hospital, Toulouse, France. Qualitative studies are essential methodologies to understand the patterns of health behaviours, describe illness experiences, and design health interventions in a humanistic and person-centred way of discovering. RESULTS: Eleven interviews (with 4 men and 7 women) were required to reach thematic saturation. Analysis allowed 4 main themes to emerge: (1) perception of new treatments, science, and caregivers; (2) conditions that the treatment must meet; (3) patient perception of the disease; and (4) factors related to the content of the treatment. CONCLUSIONS: Patients find cell therapy for periodontitis to be acceptable. If they express a need to be informed about the benefit/risk ratio, they are not particularly worried about side effects of the treatment, for either allogeneic or blood-derived products. Periodontitis is a prototypical model of chronic inflammatory pathology and is multitissular, with hard- and soft-tissue lesions. In a patient-centred approach, the success of cell therapy will require a bilateral, informed decision, taking into account potential therapeutic effectiveness and patient expectations for regeneration.

2.
Front Immunol ; 15: 1356397, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38975341

RESUMEN

Introduction: Within adipose tissue (AT), different macrophage subsets have been described, which played pivotal and specific roles in upholding tissue homeostasis under both physiological and pathological conditions. Nonetheless, studying resident macrophages in-vitro poses challenges, as the isolation process and the culture for extended periods can alter their inherent properties. Methods: Stroma-vascular cells isolated from murine subcutaneous AT were seeded on ultra-low adherent plates in the presence of macrophage colony-stimulating factor. After 4 days of culture, the cells spontaneously aggregate to form spheroids. A week later, macrophages begin to spread out of the spheroid and adhere to the culture plate. Results: This innovative three-dimensional (3D) culture method enables the generation of functional mature macrophages that present distinct genic and phenotypic characteristics compared to bone marrow-derived macrophages. They also show specific metabolic activity and polarization in response to stimulation, but similar phagocytic capacity. Additionally, based on single-cell analysis, AT-macrophages generated in 3D culture mirror the phenotypic and functional traits of in-vivo AT resident macrophages. Discussion: Our study describes a 3D in-vitro system for generating and culturing functional AT-resident macrophages, without the need for cell sorting. This system thus stands as a valuable resource for exploring the differentiation and function of AT-macrophages in vitro in diverse physiological and pathological contexts.


Asunto(s)
Tejido Adiposo , Técnicas de Cultivo Tridimensional de Células , Diferenciación Celular , Macrófagos , Animales , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Tejido Adiposo/citología , Técnicas de Cultivo Tridimensional de Células/métodos , Células Cultivadas , Fagocitosis , Ratones Endogámicos C57BL , Esferoides Celulares/citología , Técnicas de Cultivo de Célula/métodos , Fenotipo
3.
Ageing Res Rev ; 99: 102360, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38821417

RESUMEN

This article brings a new perspective on oral physiology by presenting the oral organ as an integrated entity within the entire organism and its surrounding environment. Rather than considering the mouth solely as a collection of discrete functions, this novel approach emphasizes its role as a dynamic interphase, supporting interactions between the body and external factors. As a resilient ecosystem, the equilibrium of mouth ecological niches is the result of a large number of interconnected factors including the heterogeneity of different oral structures, diversity of resources, external and internal pressures and biological actors. The manuscript seeks to deepen the understanding of age-related changes within the oral cavity and throughout the organism, aligning with the evolving field of gerophysiology. The strategic position and fundamental function of the mouth make it an invaluable target for early prevention, diagnosis, treatment, and even reversal of aging effects throughout the entire organism. Recognizing the oral cavity capacity for sensory perception, element capture and information processing underscores its vital role in continuous health monitoring. Overall, this integrated understanding of the oral physiology aims at advancing comprehensive approaches to the oral healthcare and promoting broader awareness of its implications on the overall well-being.


Asunto(s)
Envejecimiento , Envejecimiento Saludable , Boca , Humanos , Boca/fisiología , Envejecimiento Saludable/fisiología , Envejecimiento/fisiología , Salud Bucal
4.
Artículo en Inglés | MEDLINE | ID: mdl-38452244

RESUMEN

Alzheimer's disease is strongly linked to metabolic abnormalities. We aimed to distinguish amyloid-positive people who progressed to cognitive decline from those who remained cognitively intact. We performed untargeted metabolomics of blood samples from amyloid-positive individuals, before any sign of cognitive decline, to distinguish individuals who progressed to cognitive decline from those who remained cognitively intact. A plasma-derived metabolite signature was developed from Supercritical Fluid chromatography coupled with high-resolution mass spectrometry (SFC-HRMS) and nuclear magnetic resonance (NMR) metabolomics. The 2 metabolomics data sets were analyzed by Data Integration Analysis for Biomarker discovery using Latent approaches for Omics studies (DIABLO), to identify a minimum set of metabolites that could describe cognitive decline status. NMR or SFC-HRMS data alone cannot predict cognitive decline. However, among the 320 metabolites identified, a statistical method that integrated the 2 data sets enabled the identification of a minimal signature of 9 metabolites (3-hydroxybutyrate, citrate, succinate, acetone, methionine, glucose, serine, sphingomyelin d18:1/C26:0 and triglyceride C48:3) with a statistically significant ability to predict cognitive decline more than 3 years before decline. This metabolic fingerprint obtained during this exploratory study may help to predict amyloid-positive individuals who will develop cognitive decline. Due to the high prevalence of brain amyloid-positivity in older adults, identifying adults who will have cognitive decline will enable the development of personalized and early interventions.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Humanos , Anciano , Vida Independiente , Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Disfunción Cognitiva/metabolismo , Encéfalo/metabolismo , Metabolómica , Proteínas Amiloidogénicas , Péptidos beta-Amiloides/metabolismo , Biomarcadores
5.
R Soc Open Sci ; 11(1): 231456, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38298399

RESUMEN

The extracellular-matrix (ECM) is a complex interconnected three-dimensional network that provides structural support for the cells and tissues and defines organ architecture as key for their healthy functioning. However, the intimate mechanisms by which ECM acquire their three-dimensional architecture are still largely unknown. In this paper, we study this question by means of a simple three-dimensional individual based model of interacting fibres able to spontaneously crosslink or unlink to each other and align at the crosslinks. We show that such systems are able to spontaneously generate different types of architectures. We provide a thorough analysis of the emerging structures by an exhaustive parametric analysis and the use of appropriate visualization tools and quantifiers in three dimensions. The most striking result is that the emergence of ordered structures can be fully explained by a single emerging variable: the number of links per fibre in the network. If validated on real tissues, this simple variable could become an important putative target to control and predict the structuring of biological tissues, to suggest possible new therapeutic strategies to restore tissue functions after disruption, and to help in the development of collagen-based scaffolds for tissue engineering. Moreover, the model reveals that the emergence of architecture is a spatially homogeneous process following a unique evolutionary path, and highlights the essential role of dynamical crosslinking in tissue structuring.

6.
Adv Sci (Weinh) ; 10(31): e2301499, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37731092

RESUMEN

Obesity and type 2 diabetes are becoming a global sociobiomedical burden. Beige adipocytes are emerging as key inducible actors and putative relevant therapeutic targets for improving metabolic health. However, in vitro models of human beige adipose tissue are currently lacking and hinder research into this cell type and biotherapy development. Unlike traditional bottom-up engineering approaches that aim to generate building blocks, here a scalable system is proposed to generate pre-vascularized and functional human beige adipose tissue organoids using the human stromal vascular fraction of white adipose tissue as a source of adipose and endothelial progenitors. This engineered method uses a defined biomechanical and chemical environment using tumor growth factor ß (TGFß) pathway inhibition and specific gelatin methacryloyl (GelMA) embedding parameters to promote the self-organization of spheroids in GelMA hydrogel, facilitating beige adipogenesis and vascularization. The resulting vascularized organoids display key features of native beige adipose tissue including inducible Uncoupling Protein-1 (UCP1) expression, increased uncoupled mitochondrial respiration, and batokines secretion. The controlled assembly of spheroids allows to translate organoid morphogenesis to a macroscopic scale, generating vascularized centimeter-scale beige adipose micro-tissues. This approach represents a significant advancement in developing in vitro human beige adipose tissue models and facilitates broad applications ranging from basic research to biotherapies.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Obesidad/metabolismo , Adipogénesis , Tejido Adiposo Blanco/metabolismo , Organoides/metabolismo
7.
Am J Physiol Endocrinol Metab ; 325(5): E480-E490, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37729026

RESUMEN

White, beige, and brown adipose tissues play a crucial role in maintaining energy homeostasis. Due to the heterogeneous and diffuse nature of fat pads, this balance requires a fine and coordinated control of many actors and therefore permanent dialogues between these tissues and the central nervous system. For about two decades, many studies have been devoted to describe the neuro-anatomical and functional complexity involved to ensure this dialogue. Thus, if it is now clearly demonstrated that there is an efferent sympathetic innervation of different fat depots controlling plasticity as well as metabolic functions of the fat pad, the crucial role of sensory innervation capable of detecting local signals informing the central nervous system of the metabolic state of the relevant pads is much more recent. The purpose of this review is to provide the current state of knowledge on this subject.


Asunto(s)
Tejido Adiposo Pardo , Tejido Adiposo , Humanos , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/metabolismo , Obesidad/metabolismo , Sistema Nervioso Simpático , Homeostasis , Adiposidad , Termogénesis , Tejido Adiposo Blanco/metabolismo , Tejido Adiposo Beige/metabolismo
8.
Stem Cell Res Ther ; 14(1): 229, 2023 08 30.
Artículo en Inglés | MEDLINE | ID: mdl-37649081

RESUMEN

BACKGROUND: Native bone marrow (BM) mesenchymal stem/stromal cells (BM-MSCs) participate in generating and shaping the skeleton and BM throughout the lifespan. Moreover, BM-MSCs regulate hematopoiesis by contributing to the hematopoietic stem cell niche in providing critical cytokines, chemokines and extracellular matrix components. However, BM-MSCs contain a heterogeneous cell population that remains ill-defined. Although studies on the taxonomy of native BM-MSCs in mice have just started to emerge, the taxonomy of native human BM-MSCs remains unelucidated. METHODS: By using single-cell RNA sequencing (scRNA-seq), we aimed to define a proper taxonomy for native human BM non-hematopoietic subsets including endothelial cells (ECs) and mural cells (MCs) but with a focal point on MSCs. To this end, transcriptomic scRNA-seq data were generated from 5 distinct BM donors and were analyzed together with other transcriptomic data and with computational biology analyses at different levels to identify, characterize and classify distinct native cell subsets with relevant biomarkers. RESULTS: We could ascribe novel specific biomarkers to ECs, MCs and MSCs. Unlike ECs and MCs, MSCs exhibited an adipogenic transcriptomic pattern while co-expressing genes related to hematopoiesis support and multilineage commitment potential. Furthermore, by a comparative analysis of scRNA-seq of BM cells from humans and mice, we identified core genes conserved in both species. Notably, we identified MARCKS, CXCL12, PDGFRA, and LEPR together with adipogenic factors as archetypal biomarkers of native MSCs within BM. In addition, our data suggest some complex gene nodes regulating critical biological functions of native BM-MSCs together with a preferential commitment toward an adipocyte lineage. CONCLUSIONS: Overall, our taxonomy for native BM non-hematopoietic compartment provides an explicit depiction of gene expression in human ECs, MCs and MSCs at single-cell resolution. This analysis helps enhance our understanding of the phenotype and the complexity of biological functions of native human BM-MSCs.


Asunto(s)
Células Endoteliales , Células Madre Mesenquimatosas , Humanos , Animales , Ratones , Células de la Médula Ósea , Biomarcadores , Análisis de Secuencia de ARN
9.
Aging Cell ; 22(8): e13872, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37300327

RESUMEN

Attaining personalized healthy aging requires accurate monitoring of physiological changes and identifying subclinical markers that predict accelerated or delayed aging. Classic biostatistical methods most rely on supervised variables to estimate physiological aging and do not capture the full complexity of inter-parameter interactions. Machine learning (ML) is promising, but its black box nature eludes direct understanding, substantially limiting physician confidence and clinical usage. Using a broad population dataset from the National Health and Nutrition Examination Survey (NHANES) study including routine biological variables and after selection of XGBoost as the most appropriate algorithm, we created an innovative explainable ML framework to determine a Personalized physiological age (PPA). PPA predicted both chronic disease and mortality independently of chronological age. Twenty-six variables were sufficient to predict PPA. Using SHapley Additive exPlanations (SHAP), we implemented a precise quantitative associated metric for each variable explaining physiological (i.e., accelerated or delayed) deviations from age-specific normative data. Among the variables, glycated hemoglobin (HbA1c) displays a major relative weight in the estimation of PPA. Finally, clustering profiles of identical contextualized explanations reveal different aging trajectories opening opportunities to specific clinical follow-up. These data show that PPA is a robust, quantitative and explainable ML-based metric that monitors personalized health status. Our approach also provides a complete framework applicable to different datasets or variables, allowing precision physiological age estimation.


Asunto(s)
Algoritmos , Estado de Salud , Encuestas Nutricionales , Aprendizaje Automático
10.
Int J Mol Sci ; 24(3)2023 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-36768532

RESUMEN

Adipose-derived mesenchymal stromal cells (ASC) transplant to recover the optimal tissue structure/function relationship is a promising strategy to regenerate tissue lesions. Because filling local tissue defects by injection alone is often challenging, designing adequate cell carriers with suitable characteristics is critical for in situ ASC delivery. The aim of this study was to optimize the generation phase of a platelet-lysate-based fibrin hydrogel (PLFH) as a proper carrier for in situ ASC implantation and (1) to investigate in vitro PLFH biomechanical properties, cell viability, proliferation and migration sustainability, and (2) to comprehensively assess the local in vivo PLFH/ASC safety profile (local tolerance, ASC fate, biodistribution and toxicity). We first defined the experimental conditions to enhance physicochemical properties and microscopic features of PLFH as an adequate ASC vehicle. When ASC were mixed with PLFH, in vitro assays exhibited hydrogel supporting cell migration, viability and proliferation. In vivo local subcutaneous and subgingival PLFH/ASC administration in nude mice allowed us to generate biosafety data, including biodegradability, tolerance, ASC fate and engraftment, and the absence of biodistribution and toxicity to non-target tissues. Our data strongly suggest that this novel combined ATMP for in situ administration is safe with an efficient local ASC engraftment, supporting the further development for human clinical cell therapy.


Asunto(s)
Hidrogeles , Células Madre Mesenquimatosas , Animales , Ratones , Humanos , Hidrogeles/química , Medicina Regenerativa , Tejido Adiposo/metabolismo , Fibrina/metabolismo , Ratones Desnudos , Distribución Tisular , Diferenciación Celular
11.
Nat Commun ; 14(1): 80, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-36604419

RESUMEN

Fibro-adipogenic progenitors (FAPs) play a crucial role in skeletal muscle regeneration, as they generate a favorable niche that allows satellite cells to perform efficient muscle regeneration. After muscle injury, FAP content increases rapidly within the injured muscle, the origin of which has been attributed to their proliferation within the muscle itself. However, recent single-cell RNAseq approaches have revealed phenotype and functional heterogeneity in FAPs, raising the question of how this differentiation of regenerative subtypes occurs. Here we report that FAP-like cells residing in subcutaneous adipose tissue (ScAT), the adipose stromal cells (ASCs), are rapidly released from ScAT in response to muscle injury. Additionally, we find that released ASCs infiltrate the damaged muscle, via a platelet-dependent mechanism and thus contribute to the FAP heterogeneity. Moreover, we show that either blocking ASCs infiltration or removing ASCs tissue source impair muscle regeneration. Collectively, our data reveal that ScAT is an unsuspected physiological reservoir of regenerative cells that support skeletal muscle regeneration, underlining a beneficial relationship between muscle and fat.


Asunto(s)
Músculo Esquelético , Enfermedades Musculares , Humanos , Tejido Adiposo , Diferenciación Celular/genética , Adipogénesis/genética
12.
J Gerontol A Biol Sci Med Sci ; 78(3): 424-432, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36373873

RESUMEN

Periostin, involved in extracellular matrix development and support, has been shown to be elevated in senescent tissues and fibrotic states, transversal signatures of aging. We aimed to explore associations between plasma periostin and physical and cognitive capacity evolution among older adults. Our hypothesis was that higher levels of plasma periostin will be associated with worse physical and mental capacities along time. Analyses included 1 096 participants (mean age = 75.3 years ± 4.4; 63.9% women) from the Multidomain Alzheimer Preventive Trial. Periostin levels (pg/mL) were measured in plasma collected at year 1. Periostin was used in continuous variable, and as a dichotomous variable highest quartile (POSTN+) versus lowest 3 quartiles (POSTN-) were used. Outcomes were measured annually over 4 years and included: gait speed (GS), short physical performance battery (SPPB) score, 5-times sit-to-stand test (5-STS), and handgrip strength (HS) as physical and cognitive composite z-score (CCS) and the Mini-Mental State Examination (MMSE) as cognitive endpoints. Plasma periostin as a continuous variable was associated with the worsening of physical and cognitive capacities over 4 years of follow-up, specifically the SPPB score, the 5-STS, and CCS in full-adjusted models. POSTN+ was associated with worse evolution in the physical (GS: [ß = -0.057, 95% confidence interval (CI) = -0.101, -0.013], SPPB score [ß = -0.736, 95% CI = -1.091, -0.381], 5-STS [ß = 1.681, 95% CI = 0.801, 2.561]) as well as cognitive (CCS [ß = -0.215, 95% CI = -0.335, -0.094]) domains compared to POSTN- group. No association was found with HS or the MMSE score. Our study showed for the first time that increased plasma periostin levels were associated with declines in both physical and cognitive capacities in older adults over a 4-year follow-up. Further research is needed to evaluate whether periostin might be used as a predictive biomarker of functional decline at an older age.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Anciano , Femenino , Humanos , Masculino , Envejecimiento/psicología , Cognición , Fuerza de la Mano , Vida Independiente
13.
Front Physiol ; 13: 899626, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910575

RESUMEN

Traditional thin sectioning microscopy of large bone and dental tissue samples using demineralization may disrupt structure morphologies and even damage soft tissues, thus compromising the histopathological investigation. Here, we developed a synergistic and original framework on thick sections based on wide-field multi-fluorescence imaging and spectral Principal Component Analysis (sPCA) as an alternative, fast, versatile, and reliable solution, suitable for highly mineralized tissue structure sustain and visualization. Periodontal 2-mm thick sections were stained with a solution containing five fluorescent dyes chosen for their ability to discriminate close tissues, and acquisitions were performed with a multi-zoom macroscope for blue, green, red, and NIR (near-infrared) emissions. Eigen-images derived from both standard scaler (Std) and Contrast Limited Adaptive Histogram Equalization (Clahe) pre-preprocessing significantly enhanced tissue contrasts, highly suitable for histopathological investigation with an in-depth detail for sub-tissue structure discrimination. Using this method, it is possible to preserve and delineate accurately the different anatomical/morphological features of the periodontium, a complex tooth-supporting multi-tissue. Indeed, we achieve characterization of gingiva, alveolar bone, cementum, and periodontal ligament tissues. The ease and adaptability of this approach make it an effective method for providing high-contrast features that are not usually available in standard staining histology. Beyond periodontal investigations, this first proof of concept of an sPCA solution for optical microscopy of complex structures, especially including mineralized tissues opens new perspectives to deal with other chronic diseases involving complex tissue and organ defects. Overall, such an imaging framework appears to be a novel and convenient strategy for optical microscopy investigation.

15.
Cells ; 11(9)2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35563700

RESUMEN

Compared to cell suspensions or monolayers, 3D cell aggregates provide cellular interactions organized in space and heterogeneity that better resume the real organization of native tissues. They represent powerful tools to narrow down the gap between in vitro and in vivo models, thanks to their self-evolving capabilities. Recent strategies have demonstrated their potential as building blocks to generate microtissues. Developing specific methodologies capable of organizing these cell aggregates into 3D architectures and environments has become essential to convert them into functional microtissues adapted for regenerative medicine or pharmaceutical screening purposes. Although the techniques for producing individual cell aggregates have been on the market for over a decade, the methodology for engineering functional tissues starting from them is still a young and quickly evolving field of research. In this review, we first present a panorama of emerging cell aggregates microfabrication and assembly technologies. We further discuss the perspectives opened in the establishment of functional tissues with a specific focus on controlled architecture and heterogeneity to favor cell differentiation and proliferation.


Asunto(s)
Medicina Regenerativa , Ingeniería de Tejidos , Ciclo Celular , Diferenciación Celular , Microtecnología , Ingeniería de Tejidos/métodos
16.
J Pers Med ; 12(2)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35207705

RESUMEN

Early diagnosis is crucial for individuals who are susceptible to tooth-supporting tissue diseases (e.g., periodontitis) that may lead to tooth loss, so as to prevent systemic implications and maintain quality of life. The aim of this study was to propose a personalized explainable machine learning algorithm, solely based on non-invasive predictors that can easily be collected in a clinic, to identify subjects at risk of developing periodontal diseases. To this end, the individual data and periodontal health of 532 subjects was assessed. A machine learning pipeline combining a feature selection step, multilayer perceptron, and SHapley Additive exPlanations (SHAP) explainability, was used to build the algorithm. The prediction scores for healthy periodontium and periodontitis gave final F1-scores of 0.74 and 0.68, respectively, while gingival inflammation was harder to predict (F1-score of 0.32). Age, body mass index, smoking habits, systemic pathologies, diet, alcohol, educational level, and hormonal status were found to be the most contributive variables for periodontal health prediction. The algorithm clearly shows different risk profiles before and after 35 years of age and suggests transition ages in the predisposition to developing gingival inflammation or periodontitis. This innovative approach to systemic periodontal disease risk profiles, combining both ML and up-to-date explainability algorithms, paves the way for new periodontal health prediction strategies.

17.
NPJ Regen Med ; 6(1): 63, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34650070

RESUMEN

Tissue repair after injury in adult mammals, usually results in scarring and loss of function in contrast to lower vertebrates such as the newt and zebrafish that regenerate. Understanding the regulatory processes that guide the outcome of tissue repair is therefore a concerning challenge for regenerative medicine. In multiple regenerative animal species, the nerve dependence of regeneration is well established, but the nature of the innervation required for tissue regeneration remains largely undefined. Using our model of induced adipose tissue regeneration in adult mice, we demonstrate here that nociceptive nerves promote regeneration and their removal impairs tissue regeneration. We also show that blocking the receptor for the nociceptive neuropeptide calcitonin gene-related peptide (CGRP) inhibits regeneration, whereas CGRP administration induces regeneration. These findings reveal that peptidergic nociceptive neurons are required for adult mice tissue regeneration.

18.
NPJ Regen Med ; 6(1): 41, 2021 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-34344890

RESUMEN

Tissue repair after lesion usually leads to scar healing and thus loss of function in adult mammals. In contrast, other adult vertebrates such as amphibians have the ability to regenerate and restore tissue homeostasis after lesion. Understanding the control of the repair outcome is thus a concerning challenge for regenerative medicine. We recently developed a model of induced tissue regeneration in adult mice allowing the comparison of the early steps of regenerative and scar healing processes. By using studies of gain and loss of function, specific cell depletion approaches, and hematopoietic chimeras we demonstrate here that tissue regeneration in adult mammals depends on an early and transient peak of granulocyte producing reactive oxygen species and an efficient efferocytosis specifically by tissue-resident macrophages. These findings highlight key and early cellular pathways able to drive tissue repair towards regeneration in adult mammals.

19.
Front Physiol ; 12: 689747, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34276410

RESUMEN

Lactate, a metabolite produced when the glycolytic flux exceeds mitochondrial oxidative capacities, is now viewed as a critical regulator of metabolism by acting as both a carbon and electron carrier and a signaling molecule between cells and tissues. In recent years, increasing evidence report its key role in white, beige, and brown adipose tissue biology, and highlights new mechanisms by which lactate participates in the maintenance of whole-body energy homeostasis. Lactate displays a wide range of biological effects in adipose cells not only through its binding to the membrane receptor but also through its transport and the subsequent effect on intracellular metabolism notably on redox balance. This study explores how lactate regulates adipocyte metabolism and plasticity by balancing intracellular redox state and by regulating specific signaling pathways. We also emphasized the contribution of adipose tissues to the regulation of systemic lactate metabolism, their roles in redox homeostasis, and related putative physiopathological repercussions associated with their decline in metabolic diseases and aging.

20.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-34298954

RESUMEN

Opioids are regarded as among the most effective analgesic drugs and their use for the management of pain is considered standard of care. Despite their systematic administration in the peri-operative period, their impact on tissue repair has been studied mainly in the context of scar healing and is only beginning to be documented in the context of true tissue regeneration. Indeed, in mammals, growing evidence shows that opioids direct tissue repair towards scar healing, with a loss of tissue function, instead of the regenerative process that allows for recovery of both the morphology and function of tissue. Here, we review recent studies that highlight how opioids may prevent a regenerative process by silencing nociceptive nerve activity and a powerful anti-inflammatory effect. These data open up new perspectives for inducing tissue regeneration and argue for opioid-restricted strategies for managing pain associated with tissue injury.


Asunto(s)
Analgésicos Opioides/uso terapéutico , Manejo del Dolor , Dolor/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos , Animales , Humanos , Dolor/metabolismo , Dolor/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA