Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Oncol ; 18(6): 1552-1570, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38348572

RESUMEN

Serine/threonine-protein kinase B-raf (BRAF) mutations are found in 8-15% of colorectal cancer patients and identify a subset of tumors with poor outcome in the metastatic setting. We have previously reported that BRAF-mutant human cells display a high rate of protein production, causing proteotoxic stress, and are selectively sensitive to the proteasome inhibitors bortezomib and carfilzomib. In this work, we tested whether carfilzomib could restrain the growth of BRAF-mutant colorectal tumors not only by targeting cancer cells directly, but also by promoting an immune-mediated antitumor response. In human and mouse colorectal cancer cells, carfilzomib triggered robust endoplasmic reticulum stress and autophagy, followed by the emission of immunogenic-damage-associated molecules. Intravenous administration of carfilzomib delayed the growth of BRAF-mutant murine tumors and mobilized the danger-signal proteins calreticulin and high mobility group box 1 (HMGB1). Analyses of drug-treated samples revealed increased intratumor recruitment of activated cytotoxic T cells and natural killers, concomitant with the downregulation of forkhead box protein P3 (Foxp3)+ T-cell surface glycoprotein CD4 (CD4)+ T cells, indicating that carfilzomib promotes reshaping of the immune microenvironment of BRAF-mutant murine colorectal tumors. These results will inform the design of clinical trials in BRAF-mutant colorectal cancer patients.


Asunto(s)
Neoplasias Colorrectales , Mutación , Oligopéptidos , Proteínas Proto-Oncogénicas B-raf , Animales , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Proteínas Proto-Oncogénicas B-raf/genética , Humanos , Oligopéptidos/farmacología , Oligopéptidos/uso terapéutico , Ratones , Línea Celular Tumoral , Estrés del Retículo Endoplásmico/efectos de los fármacos , Estrés del Retículo Endoplásmico/genética , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Autofagia/efectos de los fármacos , Ratones Endogámicos C57BL
2.
J Exp Clin Cancer Res ; 42(1): 120, 2023 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-37170152

RESUMEN

BACKGROUND: MET-driven acquired resistance is emerging with unanticipated frequency in patients relapsing upon molecular therapy treatments. However, the determination of MET amplification remains challenging using both standard and next-generation sequencing-based methodologies. Liquid biopsy is an effective, non-invasive approach to define cancer genomic profiles, track tumor evolution over time, monitor treatment response and detect molecular resistance in advance. Circular RNAs (circRNAs), a family of RNA molecules that originate from a process of back-splicing, are attracting growing interest as potential novel biomarkers for their stability in body fluids. METHODS: We identified a circRNA encoded by the MET gene (circMET) and exploited blood-derived cell-free RNA (cfRNA) and matched tumor tissues to identify, stratify and monitor advanced cancer patients molecularly characterized by high MET activity, generally associated with genomic amplification. RESULTS: Using publicly available bioinformatic tools, we discovered that the MET locus transcribes several circRNA molecules, but only one candidate, circMET, was particularly abundant. Deeper molecular analysis revealed that circMET levels positively correlated with MET expression and activity, especially in MET-amplified cells. We developed a circMET-detection strategy and, in parallel, we performed standard FISH and IHC analyses in the same specimens to assess whether circMET quantification could identify patients displaying high MET activity. Longitudinal monitoring of circMET levels in the plasma of selected patients revealed the early emergence of MET amplification as a mechanism of acquired resistance to molecular therapies. CONCLUSIONS: We found that measurement of circMET levels allows identification and tracking of patients characterized by high MET activity. Circulating circMET (ccMET) detection and analysis could be a simple, cost-effective, non-invasive approach to better implement patient stratification based on MET expression, as well as to dynamically monitor over time both therapy response and clonal evolution during treatment.


Asunto(s)
Neoplasias , ARN Circular , Humanos , Biomarcadores , Biología Computacional , Neoplasias/genética , ARN/genética , ARN/metabolismo , ARN Circular/genética
4.
Front Immunol ; 13: 1073227, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36605214

RESUMEN

Introduction: Bone marrow (BM) Vγ9Vδ2 T cells are intrinsically predisposed to sense the immune fitness of the tumor microenvironment (TME) in multiple myeloma (MM) and monoclonal gammopathy of undetermined significance (MGUS). Methods: In this work, we have used BM Vγ9Vδ2 T cells to interrogate the role of the immune checkpoint/immune checkpoint-ligand (ICP/ICP-L) network in the immune suppressive TME of MM patients. Results: PD-1+ BM MM Vγ9Vδ2 T cells combine phenotypic, functional, and TCR-associated alterations consistent with chronic exhaustion and immune senescence. When challenged by zoledronic acid (ZA) as a surrogate assay to interrogate the reactivity to their natural ligands, BM MM Vγ9Vδ2 T cells further up-regulate PD-1 and TIM-3 and worsen TCR-associated alterations. BM MM Vγ9Vδ2 T cells up-regulate TIM-3 after stimulation with ZA in combination with αPD-1, whereas PD-1 is not up-regulated after ZA stimulation with αTIM-3, indicating a hierarchical regulation of inducible ICP expression. Dual αPD-1/αTIM-3 blockade improves the immune functions of BM Vγ9Vδ2 T cells in MM at diagnosis (MM-dia), whereas single PD-1 blockade is sufficient to rescue BM Vγ9Vδ2 T cells in MM in remission (MM-rem). By contrast, ZA stimulation induces LAG-3 up-regulation in BM Vγ9Vδ2 T cells from MM in relapse (MM-rel) and dual PD-1/LAG-3 blockade is the most effective combination in this setting. Discussion: These data indicate that: 1) inappropriate immune interventions can exacerbate Vγ9Vδ2 T-cell dysfunction 2) ICP blockade should be tailored to the disease status to get the most of its beneficial effect.


Asunto(s)
Mieloma Múltiple , Humanos , Receptor 2 Celular del Virus de la Hepatitis A , Médula Ósea , Receptor de Muerte Celular Programada 1 , Recurrencia Local de Neoplasia , Ácido Zoledrónico/farmacología , Linfocitos T/patología , Receptores de Antígenos de Linfocitos T , Microambiente Tumoral
5.
Br J Haematol ; 193(3): 581-591, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33570193

RESUMEN

Multiple functions of CD38 need exploring to expand clinical application of anti-CD38 antibodies in multiple myeloma (MM). We investigated membrane dynamics of MM cells and subsequent events when CD38 is targeted by therapeutic antibodies. Human MM cells (BF01) were co-cultured in vitro with therapeutic antibody (or control immunoglobulin G) and analysed using gene expression profiling. Microvesicles from antibody-exposed cells were analysed for differential gene and microRNA (miRNA) expression, and for phenotypic characterisation. Exposure of BF01 cells to anti-CD38 antibody resulted in CD38 membrane redistribution, upregulation of metabolism-related genes and downregulation of genes involved in cell cycle processes. Microvesicles derived from antibody-exposed cells showed increased CD73 and CD39 expression, presence of programmed death-ligand 1 and significant up-/down-modulation of miRNAs. Microvesicles accumulated around immunoglobulin Fc receptor-positive (FcR+ ) cells. Upon internalisation, natural killer cells displayed significantly increased expression of genes related to activation and immune response, and downregulation of genes involved in the cell cycle. Cells may use microvesicles to transmit signals distally as part of a survival strategy. Microvesicles are equipped on their surface with enzymatic machinery leading to production of tolerogenic adenosine. Further, they are internalised in FcR+ cells with significant functional modifications. These observations have relevance for improving anti-CD38 therapeutic antibodies through targeting this mechanism and its sequelae.


Asunto(s)
ADP-Ribosil Ciclasa 1/biosíntesis , Anticuerpos Antineoplásicos/farmacología , Membrana Celular/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glicoproteínas de Membrana/biosíntesis , Mieloma Múltiple/metabolismo , Proteínas de Neoplasias/biosíntesis , Línea Celular Tumoral , Humanos , MicroARNs/biosíntesis , Mieloma Múltiple/tratamiento farmacológico , ARN Neoplásico/biosíntesis
7.
Semin Cell Dev Biol ; 98: 80-89, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31100351

RESUMEN

Mitochondria have been considered for a long time only as the principal source of building blocks and energy upon aerobic conditions. Recently they emerged as key players in cell proliferation, invasion and resistance to therapy. The most aggressive tumors are able to evade the immune-surveillance. Alterations in the mitochondria metabolism either in cancer cells or in host immune system cells are involved in such tumor-induced immune-suppression. This review will focus on the main mitochondrial dysfunctions in tumor and immune cell populations determining immune-resistance, and on the therapies that may target mitochondrial metabolism and restore a powerful anti-tumor immune-activity.


Asunto(s)
Antineoplásicos/farmacología , Resistencia a Antineoplásicos/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Animales , Humanos , Neoplasias/patología
8.
Front Biosci (Landmark Ed) ; 25(1): 69-105, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31585878

RESUMEN

Vγ9Vδ2 T cells are immune effector cells very well-suited for immunotherapy, but clinical results have been disappointing in multiple myeloma (MM) and other cancers. We have shown that Vg9Vd2 T cells are victimized prematurely by the immune suppressive tumor microenvironment (TME) established by myeloma and neighbouring cells in the bone marrow (BM) of MM patients. One major mechanism is the highly redundant expression of multiple immunecheckpoints/immune checkpoint-ligands (ICP/ICP-L) in the TME impairing antimyeloma Vg9Vd2 T-cell immune responses. Another major immune suppressive mechanism is the metabolic reset driven by myeloma cells in the TME to satisfy their energetic needs to the detriment of effector cells. Recently, it has become clear that the ICP/ICP-L circuitry and metabolic checkpoints (MCP) jointly operate in the TME of cancer patients to promote tumor cell growth and suppress antitumor immune responses. In this review, we discuss the possible interactions between ICP/ICP-L and MCP in the TME of MM patients that may compromise the immune competence of BM Vγ9Vδ2 T cells, envisaging novel combination therapies to improve the outcome of immune-based interventions.


Asunto(s)
Inmunoterapia/métodos , Mieloma Múltiple/terapia , Linfocitos T/inmunología , Microambiente Tumoral/inmunología , Antígeno B7-H1/inmunología , Antígeno B7-H1/metabolismo , Metabolismo Energético/inmunología , Humanos , Modelos Inmunológicos , Mieloma Múltiple/inmunología , Mieloma Múltiple/metabolismo , Receptor de Muerte Celular Programada 1/inmunología , Receptor de Muerte Celular Programada 1/metabolismo , Transducción de Señal/inmunología , Linfocitos T/metabolismo
10.
J Immunol ; 202(3): 724-735, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30587530

RESUMEN

This study investigates the mechanism(s) underlying the immunoregulatory activities of placenta-derived human amnion epithelial cells (hAEC). The working hypothesis is that NAD+ and ATP, along with ectoenzymes involved in their metabolism, play a significant role in hAEC-mediated immune regulation. Proof of principle of the hypothesis was obtained by analyzing the interactions between hAEC and the main human leukocyte populations. The results obtained indicate that hAEC constitutively express a unique combination of functional ectoenzymes, driving the production of adenosine (ADO) via canonical (CD39, CD73) and alternative (CD38, CD203a/PC-1, CD73) pathways. Further, the picture is completed by the observation that hAEC express A1, A2a, and A2b ADO receptors as well as ADO deaminase, the enzyme involved in ADO catabolism. The contribution of the purinergic mediator to immunomodulation was confirmed by exposing in vitro different immune effector cells to the action of primary hAECs. B cells showed an enhanced proliferation and diminished spontaneous apoptosis when in contact with hAEC. T cell proliferation was partially inhibited by hAEC through ADO production, as confirmed by using specific ectoenzyme inhibitors. Further, hAEC induced an expansion of both T and B regulatory cells. Last, hAEC inhibited NK cell proliferation. However, the involvement of ADO-producing ectoenzymes is less apparent in this context. In conclusion, hAEC exert different in vitro immunoregulatory effects, per se, as a result of interactions with different populations of immune effector cells. These results support the view that hAEC are instrumental for regenerative medicine as well as in therapeutic applications for immune-related diseases.


Asunto(s)
Adenosina Desaminasa/metabolismo , Adenosina/biosíntesis , Amnios/citología , Proliferación Celular , Células Epiteliales/enzimología , Adenosina Desaminasa/genética , Linfocitos B/citología , Células Cultivadas , Células Epiteliales/inmunología , Humanos , Células Asesinas Naturales/citología , Activación de Linfocitos , Redes y Vías Metabólicas , Receptor de Adenosina A1/metabolismo , Receptor de Adenosina A2A/metabolismo , Linfocitos T/citología
11.
Front Oncol ; 8: 508, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30460198

RESUMEN

The advent of immune checkpoint (ICP) blockade has introduced an unprecedented paradigm shift in the treatment of cancer. Though very promising, there is still a substantial proportion of patients who do not respond or develop resistance to ICP blockade. In vitro and in vivo models are eagerly needed to identify mechanisms to maximize the immune potency of ICP blockade and overcome primary and acquired resistance to ICP blockade. Vγ9Vδ2 T cells isolated from the bone marrow (BM) from multiple myeloma (MM) are excellent tools to investigate the mechanisms of resistance to PD-1 blockade and to decipher the network of mutual interactions between PD-1 and the immune suppressive tumor microenvironment (TME). Vγ9Vδ2 T cells can easily be interrogated to dissect the progressive immune competence impairment generated in the TME by the long-lasting exposure to myeloma cellss. BM MM Vγ9Vδ2 T cells are PD-1+ and anergic to phosphoantigen (pAg) stimulation; notably, single agent PD-1 blockade is insufficient to fully recover their anti-tumor activity in vitro indicating that additional players are involved in the anergy of Vγ9Vδ2 T cells. In this mini-review we will discuss the value of Vγ9Vδ2 T cells as investigational tools to improve the potency of ICP blockade and immune interventions in MM.

12.
J Exp Clin Cancer Res ; 37(1): 286, 2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30482226

RESUMEN

BACKGROUND: Triple negative breast cancer (TNBC) easily develops resistance to the first-line drug doxorubicin, because of the high levels of the drug efflux transporter P-glycoprotein (Pgp) and the activation of pro-survival pathways dependent on endoplasmic reticulum (ER). Interfering with these mechanisms may overcome the resistance to doxorubicin, a still unmet need in TNBC. METHODS: We analyzed a panel of human and murine breast cancer cells for their resistance to doxorubicin, Pgp expression, lysosome and proteasome activity, nitrite production, ER-dependent cell death and immunogenic cell death parameters. We evaluated the efficacy of genetic (C/EBP-ß LIP induction) and pharmacological strategies (lysosome and proteasome inhibitors), in restoring the ER-dependent and immunogenic-dependent cell death induced by doxorubicin, in vitro and in syngeneic mice bearing chemoresistant TNBC. The results were analyzed by one-way analysis of variance test. RESULTS: We found that TNBC cells characterized by high levels of Pgp and resistance to doxorubicin, had low induction of the ER-dependent pro-apoptotic factor C/EBP-ß LIP upon doxorubicin treatment and high activities of lysosome and proteasome that constitutively destroyed LIP. The combination of chloroquine and bortezomib restored doxorubicin sensitivity by activating multiple and interconnected mechanisms. First, chloroquine and bortezomib prevented C/EBP-ß LIP degradation and activated LIP-dependent CHOP/TRB3/caspase 3 axis in response to doxorubicin. Second, C/EBP-ß LIP down-regulated Pgp and up-regulated calreticulin that triggered the dendritic cell (DC)-mediated phagocytosis of tumor cell, followed by the activation of anti-tumor CD8+T-lymphocytes upon doxorubicin treatment. Third, chloroquine and bortezomib increased the endogenous production of nitric oxide that further induced C/EBP-ß LIP and inhibited Pgp activity, enhancing doxorubicin's cytotoxicity. In orthotopic models of resistant TNBC, intratumor C/EBP-ß LIP induction - achieved by a specific expression vector or by chloroquine and bortezomib - effectively reduced tumor growth and Pgp expression, increased intra-tumor apoptosis and anti-tumor immune-infiltrate, rescuing the efficacy of doxorubicin. CONCLUSIONS: We suggest that preventing C/EBP-ß LIP degradation by lysosome and proteasome inhibitors triggers multiple virtuous circuitries that restore ER-dependent apoptosis, down-regulate Pgp and re-activate the DC/CD8+T-lymphocytes response against TNBC. Lysosome and proteasome inhibitors associated with doxorubicin may overcome the resistance to the drug in TNBC.


Asunto(s)
Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Doxorrubicina/farmacología , Retículo Endoplásmico/metabolismo , Óxido Nítrico/metabolismo , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/metabolismo , Animales , Línea Celular Tumoral , Resistencia a Antineoplásicos , Femenino , Humanos , Neoplasias Mamarias Experimentales/tratamiento farmacológico , Neoplasias Mamarias Experimentales/metabolismo , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos BALB C , Neoplasias de la Mama Triple Negativas/patología
13.
Front Immunol ; 9: 1492, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30013559

RESUMEN

Vγ9Vδ2 T cells are non-conventional T cells with a natural inclination to recognize and kill cancer cells. Malignant B cells, including myeloma cells, are privileged targets of Vγ9Vδ2 T cells in vitro. However, this inclination is often lost in vivo due to multiple mechanisms mediated by tumor cells and local microenvironment. Multiple myeloma (MM) is a paradigm disease in which antitumor immunity is selectively impaired at the tumor site. By interrogating the immune reactivity of bone marrow (BM) Vγ9Vδ2 T cells to phosphoantigens, we have revealed a very early and long-lasting impairment of Vγ9Vδ2 T-cell immune functions which is already detectable in monoclonal gammopathy of undetermined significance (MGUS) and not fully reverted even in clinical remission after autologous stem cell transplantation. Multiple cell subsets [MM cells, myeloid-derived suppressor cells, regulatory T cells, and BM-derived stromal cells (BMSC)] are involved in Vγ9Vδ2 T-cell inhibition via several immune suppressive mechanisms including the redundant expression of multiple immune checkpoints (ICPs). This review will address some aspects related to the dynamics of ICP expression in the BM of MM patients in relationship to the disease status (MGUS, diagnosis, remission, and relapse) and how this multifaceted ICP expression impairs Vγ9Vδ2 T-cell function. We will also provide some suggestions how to rescue Vγ9Vδ2 T cells from the immune suppression operated by ICP and to recover their antimyeloma immune effector functions at the tumor site.

14.
Front Immunol ; 9: 1246, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29937767

RESUMEN

Human Vγ9Vδ2 T cells have the capacity to detect supra-physiological concentrations of phosphoantigens (pAgs) generated by the mevalonate (Mev) pathway of mammalian cells under specific circumstances. Isopentenyl pyrophosphate (IPP) is the prototypic pAg recognized by Vγ9Vδ2 T cells. B-cell derived tumor cells (i.e., lymphoma and myeloma cells) and dendritic cells (DCs) are privileged targets of Vγ9Vδ2 T cells because they generate significant amounts of IPP which can be boosted with zoledronic acid (ZA). ZA is the most potent aminobisphosphonate (NBP) clinically available to inhibit osteoclast activation and a very potent inhibitor of farnesyl pyrophosphate synthase in the Mev pathway. ZA-treated DCs generate and release in the supernatants picomolar IPP concentrations which are sufficient to induce the activation of Vγ9Vδ2 T cells. We have recently shown that the ATP-binding cassette transporter A1 (ABCA1) plays a major role in the extracellular release of IPP from ZA-treated DCs. This novel ABCA1 function is fine-tuned by physical interactions with IPP, apolipoprotein A-I (apoA-I), and butyrophilin-3A1 (BTN3A1). The mechanisms by which soluble IPP induces Vγ9Vδ2 T-cell activation remain to be elucidated. It is possible that soluble IPP binds to BTN3A1, apoA-I, or other unknown molecules on the cell surface of bystander cells like monocytes, NK cells, Vγ9Vδ2 T cells, or any other cell locally present. Investigating this scenario may represent a unique opportunity to further characterize the role of BTN3A1 and other molecules in the recognition of soluble IPP by Vγ9Vδ2 T cells.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/genética , Transportador 1 de Casete de Unión a ATP/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Butirofilinas/genética , Butirofilinas/metabolismo , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Animales , Antígenos/inmunología , Antígenos/metabolismo , Membrana Celular/metabolismo , Regulación de la Expresión Génica , Humanos , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Fosforilación , Unión Proteica , Transporte de Proteínas , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Transducción de Señal , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
15.
Nat Commun ; 8: 15663, 2017 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-28580927

RESUMEN

Vγ9Vδ2 T cells are activated by phosphoantigens, such as isopentenyl pyrophosphate (IPP), which is generated in the mevalonate pathway of antigen-presenting cells. IPP is released in the extracellular microenvironment via unknown mechanisms. Here we show that the ATP-binding cassette transporter A1 (ABCA1) mediates extracellular IPP release from dendritic cells (DC) in cooperation with apolipoprotein A-I (apoA-I) and butyrophilin-3A1. IPP concentrations in the supernatants are sufficient to induce Vγ9Vδ2 T cell proliferation after DC mevalonate pathway inhibition with zoledronic acid (ZA). ZA treatment increases ABCA1 and apoA-I expression via IPP-dependent LXRα nuclear translocation and PI3K/Akt/mTOR pathway inhibition. These results close the mechanistic gap in our understanding of extracellular IPP release from DC and provide a framework to fine-tune Vγ9Vδ2 T cell activation via mevalonate and PI3K/Akt/mTOR pathway modulation.


Asunto(s)
Transportador 1 de Casete de Unión a ATP/metabolismo , Adenosina Trifosfato/química , Células Dendríticas/metabolismo , Activación de Linfocitos/inmunología , Transporte Activo de Núcleo Celular , Antígenos CD/metabolismo , Apolipoproteína A-I/metabolismo , Butirofilinas/metabolismo , Proliferación Celular , Células Dendríticas/citología , Células Dendríticas/inmunología , Hemiterpenos , Humanos , Inmunofenotipificación , Metabolismo de los Lípidos , Compuestos Organofosforados , Fosfatidilinositol 3-Quinasas/metabolismo , Unión Proteica , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Linfocitos T/inmunología , Células U937 , Ácido Zoledrónico
16.
Oncotarget ; 8(2): 3274-3288, 2017 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-27906678

RESUMEN

In chronic lymphocytic leukemia (CLL) the occurrence and the impact of antibody responses toward tumor-derived antigens are largely unexplored. Our serological proteomic data show that antibodies toward 47 identified antigens are detectable in 29 out of 35 patients (83%) with untreated CLL. The glycolytic enzyme alpha-enolase (ENO1) is the most frequently recognized antigen (i.e. 54% of CLL sera). We show that ENO1 is upregulated in the proliferating B-cell fraction of CLL lymph nodes. In CLL cells of the peripheral blood, ENO1 is exclusively expressed at the intracellular level, whereas it is exposed on the surface of apoptotic leukemic cells.From the clinical standpoint, patients with progressive CLL show a higher number of antigen recognitions compared to patients with stable disease. Consistently, the anti-ENO1 antibodies are prevalent in sera from patients with progressive disease and their presence is predictive of a shorter time to first treatment. This clinical inefficacy associates with the inability of patients' sera to trigger complement-dependent cytotoxicity and antibody-dependent cellular cytotoxicity against leukemic cells.Together, these results indicate that antibody responses toward tumor-derived antigens are frequently detectable in sera from patients with CLL, but they are expression of a disrupted immune system and unable to hamper disease progression.


Asunto(s)
Antígenos de Neoplasias/inmunología , Inmunidad Humoral , Leucemia Linfocítica Crónica de Células B/inmunología , Formación de Anticuerpos/inmunología , Citotoxicidad Celular Dependiente de Anticuerpos , Antígenos de Neoplasias/metabolismo , Apoptosis/genética , Apoptosis/inmunología , Biomarcadores , Biomarcadores de Tumor/inmunología , Biomarcadores de Tumor/metabolismo , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Proteínas de Unión al ADN/inmunología , Proteínas de Unión al ADN/metabolismo , Progresión de la Enfermedad , Humanos , Leucemia Linfocítica Crónica de Células B/sangre , Leucemia Linfocítica Crónica de Células B/diagnóstico , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Activación de Linfocitos/inmunología , Linfocitos/inmunología , Linfocitos/metabolismo , Estadificación de Neoplasias , Fosfopiruvato Hidratasa/inmunología , Fosfopiruvato Hidratasa/metabolismo , Proteómica/métodos , Proteínas Supresoras de Tumor/inmunología , Proteínas Supresoras de Tumor/metabolismo
17.
Cancer Immunol Res ; 3(12): 1333-1343, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26419961

RESUMEN

Non-small cell lung cancer (NSCLC) harboring chromosomal rearrangements of the anaplastic lymphoma kinase (ALK) gene is treated with ALK tyrosine kinase inhibitors (TKI), but the treatment is successful for only a limited amount of time; most patients experience a relapse due to the development of drug resistance. Here, we show that a vaccine against ALK induced a strong and specific immune response that both prophylactically and therapeutically impaired the growth of ALK-positive lung tumors in mouse models. The ALK vaccine was efficacious also in combination with ALK TKI treatment and significantly delayed tumor relapses after TKI suspension. We found that lung tumors containing ALK rearrangements induced an immunosuppressive microenvironment, regulating the expression of PD-L1 on the surface of lung tumor cells. High PD-L1 expression reduced ALK vaccine efficacy, which could be restored by administration of anti-PD-1 immunotherapy. Thus, combinations of ALK vaccine with TKIs and immune checkpoint blockade therapies might represent a powerful strategy for the treatment of ALK-driven NSCLC.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Neoplasias Pulmonares/terapia , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/inmunología , Quinasa de Linfoma Anaplásico , Animales , Antígeno B7-H1/inmunología , Linfocitos T CD8-positivos/inmunología , Carcinoma de Pulmón de Células no Pequeñas/genética , Línea Celular Tumoral , Crizotinib , Humanos , Neoplasias Pulmonares/genética , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Receptor de Muerte Celular Programada 1/inmunología , Pirazoles/inmunología , Pirazoles/uso terapéutico , Piridinas/inmunología , Piridinas/uso terapéutico , Microambiente Tumoral/inmunología , Vacunación , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Oncoimmunology ; 4(11): e1047580, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26451323

RESUMEN

Vγ9Vδ2 T cells have a natural inclination to recognize malignant B cells in vitro via receptors for stress-induced self-ligands and TCR-dependent recognition of phosphoantigens (pAgs) generated in the mevalonate (Mev) pathway. This inclination is continuously challenged in vivo by the immune suppression operated by tumor cells. Multiple myeloma (MM) is a prototypic B-cell malignancy in which myeloma cells subvert the local microenvironment to reshape antitumor immune responses. In this study, we have investigated the immune competence of bone marrow (BM) Vγ9Vδ2 T cells in a large series of MM patients. We have found that the BM microenvironment significantly hampers the pAg-reactivity of BM Vγ9Vδ2 T cells, which become largely PD-1+ and are surrounded by PD-L1+ myeloma cells and increased numbers of PD-L1+ myeloid-derived suppressor cells (MDSC). Vγ9Vδ2 T-cell dysfunction is an early event that can be already detected in individuals with monoclonal gammopathy of undetermined significance (MGUS) and not fully reverted even when MM patients achieve clinical remission. Anti-PD-1 treatment increases the cytotoxic potential of Vγ9Vδ2 T cells by almost 5-fold after pAg stimulation, and appears to be a promising strategy for effective immune interventions in MM.

19.
Oncotarget ; 6(30): 29833-46, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26284584

RESUMEN

The immunoglobulin heavy-chain variable region (IGHV) mutational status is a strong determinant of remission duration in chronic lymphocytic leukemia (CLL). The aim of this work was to compare the multidrug resistance (MDR) signature of IGHV mutated and unmutated CLL cells, identifying biochemical and molecular targets potentially amenable to therapeutic intervention.We found that the mevalonate pathway-dependent Ras/ERK1-2 and RhoA/RhoA kinase signaling cascades, and the downstream HIF-1α/P-glycoprotein axis were more active in IGHV unmutated than in mutated cells, leading to a constitutive protection from doxorubicin-induced cytotoxicity. The constitutive MDR phenotype of IGHV unmutated cells was partially dependent on B cell receptor signaling, as shown by the inhibitory effect exerted by ibrutinib. Stromal cells further protected IGHV unmutated cells from doxorubicin by upregulating Ras/ERK1-2, RhoA/RhoA kinase, Akt, HIF-1α and P-glycoprotein activities. Mevalonate pathway inhibition with simvastatin abrogated these signaling pathways and reversed the resistance of IGHV unmutated cells to doxorubicin, also counteracting the protective effect exerted by stromal cells. Similar results were obtained via the targeted inhibition of the downstream molecules ERK1-2, RhoA kinase and HIF-1α.Therefore, targeting the mevalonate pathway and its downstream signaling cascades is a promising strategy to circumvent the MDR signature of IGHV unmutated CLL cells.


Asunto(s)
Doxorrubicina/farmacología , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Simvastatina/farmacología , Células del Estroma/efectos de los fármacos , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antibióticos Antineoplásicos/farmacología , Western Blotting , Línea Celular , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Resistencia a Múltiples Medicamentos/genética , Femenino , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Cadenas Pesadas de Inmunoglobulina/genética , Región Variable de Inmunoglobulina/genética , Leucemia Linfocítica Crónica de Células B/sangre , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Persona de Mediana Edad , Mutación , Transducción de Señal/efectos de los fármacos , Células del Estroma/citología , Células del Estroma/metabolismo , Células Tumorales Cultivadas
20.
PLoS One ; 10(5): e0126159, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25955018

RESUMEN

BACKGROUND: Multidrug resistant cancer cells are hard to eradicate for the inefficacy of conventional anticancer drugs. Besides escaping the cytotoxic effects of chemotherapy, they also bypass the pro-immunogenic effects induced by anticancer drugs: indeed they are not well recognized by host dendritic cells and do not elicit a durable anti-tumor immunity. It has not yet been investigated whether multidrug resistant cells have a different ability to induce immunosuppression than chemosensitive ones. We addressed this issue in human and murine chemosensitive and multidrug resistant cancer cells. RESULTS: We found that the activity and expression of indoleamine 2,3-dioxygenase 1 (IDO1), which catalyzes the conversion of tryptophan into the immunosuppressive metabolite kynurenine, was higher in all the multidrug resistant cells analyzed and that IDO1 inhibition reduced the growth of drug-resistant tumors in immunocompetent animals. In chemoresistant cells the basal activity of JAK1/STAT1 and JAK1/STAT3 signaling was higher, the STAT3 inhibitor PIAS3 was down-regulated, and the autocrine production of STAT3-target and IDO1-inducers cytokines IL-6, IL-4, IL-1ß, IL-13, TNF-α and CD40L, was increased. The disruption of the JAK/STAT signaling lowered the IDO1 activity and reversed the kynurenine-induced pro-immunosuppressive effects, as revealed by the restored proliferation of T-lymphocytes in STAT-silenced chemoresistant cells. CONCLUSIONS: Our work shows that multidrug resistant cells have a stronger immunosuppressive attitude than chemosensitive cells, due to the constitutive activation of the JAK/STAT/IDO1 axis, thus resulting chemo- and immune-evasive. Disrupting this axis may significantly improve the efficacy of chemo-immunotherapy protocols against resistant tumors.


Asunto(s)
Citocinas/metabolismo , Janus Quinasa 1/metabolismo , Quinurenina/metabolismo , Factor de Transcripción STAT1/metabolismo , Factor de Transcripción STAT3/metabolismo , Transducción de Señal , Animales , Comunicación Autocrina , Línea Celular Tumoral , Regulación hacia Abajo , Resistencia a Antineoplásicos , Femenino , Células HT29 , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Células K562 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Chaperonas Moleculares/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Proteínas Inhibidoras de STAT Activados/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Factor de Transcripción STAT1/antagonistas & inhibidores , Factor de Transcripción STAT1/genética , Factor de Transcripción STAT3/antagonistas & inhibidores , Factor de Transcripción STAT3/genética , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...