Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(1): 204-214, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38222599

RESUMEN

Polymeric coatings are a promising option for the development of delivery systems for orally administered drugs. However, the gastrointestinal conditions to which they are subjected, which include low pH and solubility as well as peristaltic movements, can limit their applications. In this work, different formulations of polymeric coatings were produced using pH-sensitive materials consisting of copolymers of methyl acrylate, methyl methacrylate, and methacrylic acid. The polymers were synthesized by the emulsion polymerization technique, obtaining small average particle sizes (56-190 nm), molecular weights between 200,000 and 400,000 g/mol, and a glass transition temperature above 35 °C, which are suitable for film formation at room temperature. Thus, they were assessed as coatings for hydroxypropyl methylcellulose capsules (HPMC) using the immersion method, showing adequate capacity to protect the capsule at gastric pH (pH 1.2) and dissolve at the simulated intestinal pH (pH= 7.2). In particular, the higher the content of the acidic monomer, the higher the release time of the test molecule contained in the acrylic terpolymer-coated HPMC capsules proposed, which was a curcuminoid derivative due to their bright color and potential medical benefits. In addition, a minimum number of immersions was required for coating the HPMC capsules at high acidic concentrations, which further facilitates the delayed release needed for colonic treatment. However, too high proportions of methacrylic acid may result in cytotoxicity issues. Consequently, a biocompatible formulation containing a proportion of methyl acrylate, methyl methacrylate, and methacrylic acid of 7:3:3 is proposed as the most adequate for colonic release. Thus, by chemically modulating the molar percentages of the acrylic monomers, it was possible to obtain tailored acrylic terpolymer coatings with different characteristics and desired properties in order to modulate the release kinetics of an active substance in a colonic environment.

2.
Cytotherapy ; 25(12): 1293-1299, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37737764

RESUMEN

BACKGROUND AIMS: With the objective of improving the ex vivo production of therapeutic chimeric antigen receptor (CAR) T cells, we explored the addition of three-dimensional (3D) polystyrene scaffolds to standard suspension cell cultures. METHODS: We aimed to mimic the structural support given by the lymph nodes during in vivo lymphocyte expansion. RESULTS: We observed an increase in cell proliferation compared with standard suspension systems as well as an enhanced cytotoxicity toward cancer cells. Moreover, we directly obtained the CAR T cells from peripheral blood mononuclear cells, thus minimizing the ex vivo manipulation of the therapeutic cells and opening the way to synergies among different cell populations. CONCLUSIONS: We propose the use of commercially available 3D polystyrene systems to improve the current immune cell cultures and resulting cell products for emerging cellular (immuno)therapies.


Asunto(s)
Leucocitos Mononucleares , Receptores Quiméricos de Antígenos , Receptores Quiméricos de Antígenos/genética , Poliestirenos , Técnicas de Cultivo Tridimensional de Células , Linfocitos T
3.
Adv Biol (Weinh) ; 7(12): e2300118, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37505458

RESUMEN

Tumoroids are 3D in vitro models that recapitulate key features of in vivo tumors, such as their architecture - hypoxic center and oxygenated outer layer - in contrast with traditional 2D cell cultures. Moreover, they may be able to preserve the patient-specific signature in terms of cell heterogeneity and mutations. Tumoroids are, therefore, interesting tools for improving the understanding of cancer biology, developing new drugs, and potentially designing personalized therapeutic plans. Currently, tumoroids are most often established using basement membrane extracts (BME), which provide a multitude of biological cues. However, BME are characterized by a lack of well-defined composition, limited reproducibility, and potential immunogenicity as a consequence of their natural origin. Synthetic polymers can overcome these problems but lack structural and biochemical complexity, which can limit the functional capabilities of organoids. Biohybrid hydrogels consisting of both natural and synthetic components can combine their advantages and offer superior 3D culture systems. In this review, it is summarized efforts devoted to producing tumoroids using different types of biohybrid hydrogels, which are classified according to their crosslinking mechanism.


Asunto(s)
Hidrogeles , Organoides , Humanos , Hidrogeles/química , Reproducibilidad de los Resultados , Membrana Basal , Polímeros
4.
ACS Appl Mater Interfaces ; 14(42): 48179-48193, 2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36251059

RESUMEN

The synthesis and study of the tripeptide Arg-Gly-Asp (RGD), the binding site of different extracellular matrix proteins, e.g., fibronectin and vitronectin, has allowed the production of a wide range of cell adhesive surfaces. Although the surface density and spacing of the RGD peptide at the nanoscale have already shown a significant influence on cell adhesion, the impact of its hierarchical nanostructure is still rather unexplored. Accordingly, a versatile colloidal system named quatsomes, based on fluid nanovesicles formed by the self-assembling of cholesterol and surfactant molecules, has been devised as a novel template to achieve hierarchical nanostructures of the RGD peptide. To this end, RGD was anchored on the vesicle's fluid membrane of quatsomes, and the RGD-functionalized nanovesicles were covalently anchored to planar gold surfaces, forming a state of quasi-suspension, through a long poly(ethylene glycol) (PEG) chain with a thiol termination. An underlying self-assembled monolayer (SAM) of a shorter PEG was introduced for vesicle stabilization and to avoid unspecific cell adhesion. In comparison with substrates featuring a homogeneous distribution of RGD peptides, the resulting hierarchical nanoarchitectonic dramatically enhanced cell adhesion, despite lower overall RGD molecules on the surface. The new versatile platform was thoroughly characterized using a multitechnique approach, proving its enhanced performance. These findings open new methods for the hierarchical immobilization of biomolecules on surfaces using quatsomes as a robust and novel tissue engineering strategy.


Asunto(s)
Fibronectinas , Integrinas , Integrinas/metabolismo , Adhesión Celular , Fibronectinas/farmacología , Fibronectinas/metabolismo , Vitronectina , Oligopéptidos/farmacología , Polietilenglicoles , Tensoactivos , Compuestos de Sulfhidrilo , Oro/farmacología
5.
Biomater Sci ; 10(14): 3730-3738, 2022 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-35660816

RESUMEN

Advanced personalized immunotherapies still have to overcome several biomedical and technical limitations before they become a routine cancer treatment in spite of recent achievements. In adoptive cell therapy (ACT), the capacity to obtain adequate numbers of therapeutic T cells in the patients following ex vivo treatment should be improved. Moreover, the time and costs to produce these T cells should be reduced. In this work, inverse opal (IOPAL) 3D hydrogels consisting of poly(ethylene) glycol (PEG) covalently combined with heparin were engineered to resemble the environment of lymph nodes, where T cells get activated and proliferate. The introduction of an IOPAL strategy allowed a precise control on the porosity of the hydrogels, providing an increase in the proliferation of primary human CD4+ T cells, when compared with state-of-the-art expansion systems. Additionally, the IOPAL hydrogels also showed a superior expansion compared to hydrogels with the same composition, but without the predetermined pore structure. In summary, we have shown the beneficial effect of having an IOPAL architecture in our 3D hydrogels to help achieving large numbers of cells, while maintaining the desired selected phenotypes required for ACT.


Asunto(s)
Hidrogeles , Polietilenglicoles , Proliferación Celular , Humanos , Hidrogeles/química , Polietilenglicoles/química , Porosidad , Linfocitos T
6.
Nanoscale ; 11(24): 11530-11541, 2019 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-31150038

RESUMEN

Artificial organelles are envisioned as nanosized assemblies with intracellular biocatalytic activity to provide the host cells with non-native or missing/lost function. Hybrid vesicles loaded with glucose oxidase (NRGOx) or ß-galactosidase (NRß-Gal) and equipped with lysosomal escape ability are assembled using phospholipids and the block copolymer poly(cholesteryl methacrylate)-block-poly(2-(dimethylamino)ethyl methacrylate). The co-localization of the building blocks and the catalytic activity of NRGOx and NRß-Gal are illustrated. The intracellular activity of the nanoreactors in RAW 264.7 macrophages is confirmed by an enhanced reduction in viability for cells pre-incubated with NRGOx in the presence of glucose due to the generation of cytotoxic hydrogen peroxide compared to the controls. In addition, RAW 264.7 macrophages and primary human macrophages equipped with NRß-Gal are able to intracellularly convert ß-Gal-NONOate into nitric oxide. The successful use of these hybrid vesicles to equip host macrophages with additional catalytic activity diversifies the available toolbox of nanocarriers with envisioned application in cell mimicry.


Asunto(s)
Glucosa Oxidasa/química , Macrófagos/metabolismo , Nanoestructuras/química , Óxido Nítrico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , beta-Galactosidasa/química , Animales , Humanos , Ratones , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...