Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell Host Microbe ; 32(2): 151-153, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38359796

RESUMEN

Surging depression rates highlight the need for innovative strategies beyond the traditional focus on the brain. In this issue of Cell Host & Microbe, Cheng et al. uncover a role for the gut microbiota in depression through the intestinal receptor Grp35 and indole pathway, offering hope in fighting against depression.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Intestinos , Indoles/farmacología , Indoles/metabolismo
2.
Cell Rep Med ; 4(12): 101341, 2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38118419

RESUMEN

The gut microbiota contributes to the pathophysiology of non-alcoholic fatty liver disease (NAFLD). Histidine is a key energy source for the microbiota, scavenging it from the host. Its role in NAFLD is poorly known. Plasma metabolomics, liver transcriptomics, and fecal metagenomics were performed in three human cohorts coupled with hepatocyte, rodent, and Drosophila models. Machine learning analyses identified plasma histidine as being strongly inversely associated with steatosis and linked to a hepatic transcriptomic signature involved in insulin signaling, inflammation, and trace amine-associated receptor 1. Circulating histidine was inversely associated with Proteobacteria and positively with bacteria lacking the histidine utilization (Hut) system. Histidine supplementation improved NAFLD in different animal models (diet-induced NAFLD in mouse and flies, ob/ob mouse, and ovariectomized rats) and reduced de novo lipogenesis. Fecal microbiota transplantation (FMT) from low-histidine donors and mono-colonization of germ-free flies with Enterobacter cloacae increased triglyceride accumulation and reduced histidine content. The interplay among microbiota, histidine catabolism, and NAFLD opens therapeutic opportunities.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Obesidad Mórbida , Humanos , Ratones , Ratas , Animales , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Histidina/uso terapéutico , Microbioma Gastrointestinal/fisiología , Dieta Alta en Grasa
3.
Sci Adv ; 9(32): eadg4017, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37566655

RESUMEN

Obesity is associated with cognitive decline. Recent observations in mice propose an adipose tissue (AT)-brain axis. We identified 188 genes from RNA sequencing of AT in three cohorts that were associated with performance in different cognitive domains. These genes were mostly involved in synaptic function, phosphatidylinositol metabolism, the complement cascade, anti-inflammatory signaling, and vitamin metabolism. These findings were translated into the plasma metabolome. The circulating blood expression levels of most of these genes were also associated with several cognitive domains in a cohort of 816 participants. Targeted misexpression of candidate gene ortholog in the Drosophila fat body significantly altered flies memory and learning. Among them, down-regulation of the neurotransmitter release cycle-associated gene SLC18A2 improved cognitive abilities in Drosophila and in mice. Up-regulation of RIMS1 in Drosophila fat body enhanced cognitive abilities. Current results show previously unidentified connections between AT transcriptome and brain function in humans, providing unprecedented diagnostic/therapeutic targets in AT.


Asunto(s)
Cognición , Obesidad , Humanos , Animales , Ratones , Obesidad/metabolismo , Encéfalo/metabolismo , Drosophila/genética , Tejido Adiposo/metabolismo
4.
Mol Ther Nucleic Acids ; 29: 599-613, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-36090751

RESUMEN

Circulating lipopolysaccharide-binding protein (LBP) is increased in individuals with liver steatosis. We aimed to evaluate the possible impact of liver LBP downregulation using lipid nanoparticle-containing chemically modified LBP small interfering RNA (siRNA) (LNP-Lbp UNA-siRNA) on the development of fatty liver. Weekly LNP-Lbp UNA-siRNA was administered to mice fed a standard chow diet, a high-fat and high-sucrose diet, and a methionine- and choline-deficient diet (MCD). In mice fed a high-fat and high-sucrose diet, which displayed induced liver lipogenesis, LBP downregulation led to reduced liver lipid accumulation, lipogenesis (mainly stearoyl-coenzyme A desaturase 1 [Scd1]) and lipid peroxidation-associated oxidative stress markers. LNP-Lbp UNA-siRNA also resulted in significantly decreased blood glucose levels during an insulin tolerance test. In mice fed a standard chow diet or an MCD, in which liver lipogenesis was not induced or was inhibited (especially Scd1 mRNA), liver LBP downregulation did not impact on liver steatosis. The link between hepatocyte LBP and lipogenesis was further confirmed in palmitate-treated Hepa1-6 cells, in primary human hepatocytes, and in subjects with morbid obesity. Altogether, these data indicate that siRNA against liver Lbp mRNA constitutes a potential target therapy for obesity-associated fatty liver through the modulation of hepatic Scd1.

5.
Cell Metab ; 34(5): 681-701.e10, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35508109

RESUMEN

The microbiota-gut-brain axis has emerged as a novel target in depression, a disorder with low treatment efficacy. However, the field is dominated by underpowered studies focusing on major depression not addressing microbiome functionality, compositional nature, or confounding factors. We applied a multi-omics approach combining pre-clinical models with three human cohorts including patients with mild depression. Microbial functions and metabolites converging onto glutamate/GABA metabolism, particularly proline, were linked to depression. High proline consumption was the dietary factor with the strongest impact on depression. Whole-brain dynamics revealed rich club network disruptions associated with depression and circulating proline. Proline supplementation in mice exacerbated depression along with microbial translocation. Human microbiota transplantation induced an emotionally impaired phenotype in mice and alterations in GABA-, proline-, and extracellular matrix-related prefrontal cortex genes. RNAi-mediated knockdown of proline and GABA transporters in Drosophila and mono-association with L. plantarum, a high GABA producer, conferred protection against depression-like states. Targeting the microbiome and dietary proline may open new windows for efficient depression treatment.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Animales , Depresión/metabolismo , Humanos , Ratones , Prolina , Ácido gamma-Aminobutírico
6.
Cell Host Microbe ; 30(3): 340-356.e8, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35176247

RESUMEN

Growing evidence implicates the gut microbiome in cognition. Viruses, the most abundant life entities on the planet, are a commonly overlooked component of the gut virome, dominated by the Caudovirales and Microviridae bacteriophages. Here, we show in a discovery (n = 114) and a validation cohort (n = 942) that subjects with increased Caudovirales and Siphoviridae levels in the gut microbiome had better performance in executive processes and verbal memory. Conversely, increased Microviridae levels were linked to a greater impairment in executive abilities. Microbiota transplantation from human donors with increased specific Caudovirales (>90% from the Siphoviridae family) levels led to increased scores in the novel object recognition test in mice and up-regulated memory-promoting immediate early genes in the prefrontal cortex. Supplementation of the Drosophila diet with the 936 group of lactococcal Siphoviridae bacteriophages resulted in increased memory scores and upregulation of memory-involved brain genes. Thus, bacteriophages warrant consideration as novel actors in the microbiome-brain axis.


Asunto(s)
Bacteriófagos , Caudovirales , Dípteros , Microbioma Gastrointestinal , Animales , Bacteriófagos/genética , Función Ejecutiva , Microbioma Gastrointestinal/genética , Humanos , Ratones
7.
Adv Sci (Weinh) ; 9(4): e2104759, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34898027

RESUMEN

The H19X-encoded miR-424(322)/503 cluster regulates multiple cellular functions. Here, it is reported for the first time that it is also a critical linchpin of fat mass expansion. Deletion of this miRNA cluster in mice results in obesity, while increasing the pool of early adipocyte progenitors and hypertrophied adipocytes. Complementary loss and gain of function experiments and RNA sequencing demonstrate that miR-424(322)/503 regulates a conserved genetic program involved in the differentiation and commitment of white adipocytes. Mechanistically, it is demonstrated that miR-424(322)/503 targets γ-Synuclein (SNCG), a factor that mediates this program rearrangement by controlling metabolic functions in fat cells, allowing adipocyte differentiation and adipose tissue enlargement. Accordingly, diminished miR-424(322) in mice and obese humans co-segregate with increased SNCG in fat and peripheral blood as mutually exclusive features of obesity, being normalized upon weight loss. The data unveil a previously unknown regulatory mechanism of fat mass expansion tightly controlled by the miR-424(322)/503 through SNCG.


Asunto(s)
Tejido Adiposo/metabolismo , Diferenciación Celular , MicroARNs/metabolismo , Proteínas de Neoplasias/metabolismo , gamma-Sinucleína/metabolismo , Adipogénesis , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Proteínas de Neoplasias/genética , gamma-Sinucleína/genética
8.
Gut ; 70(12): 2283-2296, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33514598

RESUMEN

BACKGROUND: Inhibitory control (IC) is critical to keep long-term goals in everyday life. Bidirectional relationships between IC deficits and obesity are behind unhealthy eating and physical exercise habits. METHODS: We studied gut microbiome composition and functionality, and plasma and faecal metabolomics in association with cognitive tests evaluating inhibitory control (Stroop test) and brain structure in a discovery (n=156), both cross-sectionally and longitudinally, and in an independent replication cohort (n=970). Faecal microbiota transplantation (FMT) in mice evaluated the impact on reversal learning and medial prefrontal cortex (mPFC) transcriptomics. RESULTS: An interplay among IC, brain structure (in humans) and mPFC transcriptomics (in mice), plasma/faecal metabolomics and the gut metagenome was found. Obesity-dependent alterations in one-carbon metabolism, tryptophan and histidine pathways were associated with IC in the two independent cohorts. Bacterial functions linked to one-carbon metabolism (thyX,dut, exodeoxyribonuclease V), and the anterior cingulate cortex volume were associated with IC, cross-sectionally and longitudinally. FMT from individuals with obesity led to alterations in mice reversal learning. In an independent FMT experiment, human donor's bacterial functions related to IC deficits were associated with mPFC expression of one-carbon metabolism-related genes of recipient's mice. CONCLUSION: These results highlight the importance of targeting obesity-related impulsive behaviour through the induction of gut microbiota shifts.


Asunto(s)
Aminoácidos Aromáticos/metabolismo , Carbono/metabolismo , Trasplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiología , Inhibición Psicológica , Obesidad/complicaciones , Adulto , Anciano , Animales , Estudios Transversales , Hígado Graso/microbiología , Femenino , Humanos , Masculino , Ratones , Persona de Mediana Edad , Fenotipo , Transcriptoma
9.
Cell Metab ; 32(4): 548-560.e7, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33027674

RESUMEN

The gut microbiome has been linked to fear extinction learning in animal models. Here, we aimed to explore the gut microbiome and memory domains according to obesity status. A specific microbiome profile associated with short-term memory, working memory, and the volume of the hippocampus and frontal regions of the brain differentially in human subjects with and without obesity. Plasma and fecal levels of aromatic amino acids, their catabolites, and vegetable-derived compounds were longitudinally associated with short-term and working memory. Functionally, microbiota transplantation from human subjects with obesity led to decreased memory scores in mice, aligning this trait from humans with that of recipient mice. RNA sequencing of the medial prefrontal cortex of mice revealed that short-term memory associated with aromatic amino acid pathways, inflammatory genes, and clusters of bacterial species. These results highlight the potential therapeutic value of targeting the gut microbiota for memory impairment, specifically in subjects with obesity.


Asunto(s)
Aminoácidos Aromáticos/metabolismo , Microbioma Gastrointestinal , Memoria a Corto Plazo , Obesidad/metabolismo , Adulto , Anciano , Animales , Estudios de Casos y Controles , Estudios Transversales , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Metabolómica , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad
10.
Am J Psychiatry ; 177(6): 526-536, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32046534

RESUMEN

OBJECTIVE: Attention deficit hyperactivity disorder (ADHD) is a common, highly heritable neuropsychiatric disorder. ADHD often co-occurs with intellectual disability, and shared overlapping genetics have been suggested. The aim of this study was to identify novel ADHD genes by investigating whether genes carrying rare mutations linked to intellectual disability contribute to ADHD risk through common genetic variants. Validation and characterization of candidates were performed using Drosophila melanogaster. METHODS: Common genetic variants in a diagnostic gene panel of 396 autosomal intellectual disability genes were tested for association with ADHD risk through gene set and gene-wide analyses, using ADHD meta-analytic data from the Psychiatric Genomics Consortium for discovery (N=19,210) and ADHD data from the Lundbeck Foundation Initiative for Integrative Psychiatric Research for replication (N=37,076). The significant genes were functionally validated and characterized in Drosophila by assessing locomotor activity and sleep upon knockdown of those genes in brain circuits. RESULTS: The intellectual disability gene set was significantly associated with ADHD risk in the discovery and replication data sets. The three genes most consistently associated were MEF2C, ST3GAL3, and TRAPPC9. Performing functional characterization of the two evolutionarily conserved genes in Drosophila melanogaster, the authors found that their knockdown in dopaminergic (dMEF2) and circadian neurons (dTRAPPC9) resulted in increased locomotor activity and reduced sleep, concordant with the human phenotype. CONCLUSIONS: This study reveals that a large set of intellectual disability-related genes contribute to ADHD risk through effects of common alleles. Utilizing this continuity, the authors identified TRAPPC9, MEF2C, and ST3GAL3 as novel ADHD candidate genes. Characterization in Drosophila suggests that TRAPPC9 and MEF2C contribute to ADHD-related behavior through distinct neural substrates.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Péptidos y Proteínas de Señalización Intercelular/genética , Locomoción/genética , Factores Reguladores Miogénicos/genética , Sialiltransferasas/genética , Adulto , Anciano , Animales , Ritmo Circadiano , Neuronas Dopaminérgicas/metabolismo , Femenino , Técnicas de Silenciamiento del Gen , Estudio de Asociación del Genoma Completo , Humanos , Discapacidad Intelectual/genética , Factores de Transcripción MEF2/genética , Masculino , Persona de Mediana Edad , Neuronas/metabolismo , Sueño/genética
11.
Food Chem Toxicol ; 131: 110543, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31154084

RESUMEN

A dual role of hydrogen sulfide (H2S) in inflammation is well-reported and recent studies demonstrated adipogenic effects of H2S in 3T3-L1 cells. Here, we aimed to investigate the effects of H2S on adipocyte differentiation and inflammation. H2S concentration in 3T3-L1 culture media was increased during adipocyte differentiation in parallel to adipogenic and Cth gene expression, and its inhibition using DL-Propargyl Glycine (PPG) impaired 3T3-L1 differentiation. GYY4137 and Na2S administration only in the first or in the last stage of adipocyte differentiation resulted in a significant increased expression of adipogenic genes. However, when GYY4137 or Na2S were administrated during all process no significant effects on adipogenic gene expression were found, suggesting that excessive H2S administration might exert negative effects on adipogenesis. In fact, continuous addition of Na2S, which resulted in Na2S excess, inhibited adipogenesis, whereas time-expired Na2S had no effect. In inflammatory conditions, GYY4137, but not Na2S, administration attenuated the negative effects of inflammation on adipogenesis and insulin signaling-related gene expression during adipocyte differentiation. In inflamed adipocytes, Na2S administration enhanced the negative effects of inflammatory process. Altogether these data showed that slow-releasing H2S improved adipocyte differentiation in inflammatory conditions, and that H2S proadipogenic effects depend on dose, donor and exposure time.


Asunto(s)
Adipocitos/efectos de los fármacos , Sulfuro de Hidrógeno/metabolismo , Morfolinas/farmacología , Compuestos Organotiofosforados/farmacología , Sulfuros/farmacología , Células 3T3-L1 , Adipogénesis/efectos de los fármacos , Adipogénesis/fisiología , Alquinos/farmacología , Animales , Diferenciación Celular/efectos de los fármacos , Expresión Génica/efectos de los fármacos , Glicina/análogos & derivados , Glicina/farmacología , Inflamación/fisiopatología , Ratones
12.
Dis Model Mech ; 12(5)2019 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-31088981

RESUMEN

Intellectual disability (ID) and autism spectrum disorders (ASD) are frequently co-occurring neurodevelopmental disorders and affect 2-3% of the population. Rapid advances in exome and genome sequencing have increased the number of known implicated genes by threefold, to more than a thousand. The main challenges in the field are now to understand the various pathomechanisms associated with this bewildering number of genetic disorders, to identify new genes and to establish causality of variants in still-undiagnosed cases, and to work towards causal treatment options that so far are available only for a few metabolic conditions. To meet these challenges, the research community needs highly efficient model systems. With an increasing number of relevant assays and rapidly developing novel methodologies, the fruit fly Drosophila melanogaster is ideally positioned to change gear in ID and ASD research. The aim of this Review is to summarize some of the exciting work that already has drawn attention to Drosophila as a model for these disorders. We highlight well-established ID- and ASD-relevant fly phenotypes at the (sub)cellular, brain and behavioral levels, and discuss strategies of how this extraordinarily efficient and versatile model can contribute to 'next generation' medical genomics and to a better understanding of these disorders.


Asunto(s)
Trastorno del Espectro Autista/patología , Drosophila melanogaster/fisiología , Discapacidad Intelectual/patología , Animales , Trastorno del Espectro Autista/genética , Drosophila melanogaster/genética , Redes Reguladoras de Genes , Humanos , Discapacidad Intelectual/genética , Investigación Biomédica Traslacional
13.
PLoS One ; 14(2): e0211652, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30753188

RESUMEN

FOXP proteins form a subfamily of evolutionarily conserved transcription factors involved in the development and functioning of several tissues, including the central nervous system. In humans, mutations in FOXP1 and FOXP2 have been implicated in cognitive deficits including intellectual disability and speech disorders. Drosophila exhibits a single ortholog, called FoxP, but due to a lack of characterized mutants, our understanding of the gene remains poor. Here we show that the dimerization property required for mammalian FOXP function is conserved in Drosophila. In flies, FoxP is enriched in the adult brain, showing strong expression in ~1000 neurons of cholinergic, glutamatergic and GABAergic nature. We generate Drosophila loss-of-function mutants and UAS-FoxP transgenic lines for ectopic expression, and use them to characterize FoxP function in the nervous system. At the cellular level, we demonstrate that Drosophila FoxP is required in larvae for synaptic morphogenesis at axonal terminals of the neuromuscular junction and for dendrite development of dorsal multidendritic sensory neurons. In the developing brain, we find that FoxP plays important roles in α-lobe mushroom body formation. Finally, at a behavioral level, we show that Drosophila FoxP is important for locomotion, habituation learning and social space behavior of adult flies. Our work shows that Drosophila FoxP is important for regulating several neurodevelopmental processes and behaviors that are related to human disease or vertebrate disease model phenotypes. This suggests a high degree of functional conservation with vertebrate FOXP orthologues and established flies as a model system for understanding FOXP related pathologies.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Factores de Transcripción Forkhead/fisiología , Sistema Nervioso/crecimiento & desarrollo , Animales , Animales Modificados Genéticamente , Conducta Animal , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Secuencia Conservada , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Factores de Transcripción Forkhead/genética , Técnicas de Silenciamiento del Gen , Locomoción , Cuerpos Pedunculados/crecimiento & desarrollo , Cuerpos Pedunculados/metabolismo , Sistema Nervioso/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Células Receptoras Sensoriales/fisiología , Técnicas del Sistema de Dos Híbridos
14.
J Vis Exp ; (129)2017 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-29155762

RESUMEN

Advances in next-generation sequencing technologies contribute to the identification of (candidate) disease genes for movement disorders and other neurological diseases at an increasing speed. However, little is known about the molecular mechanisms that underlie these disorders. The genetic, molecular, and behavioral toolbox of Drosophila melanogaster makes this model organism particularly useful to characterize new disease genes and mechanisms in a high-throughput manner. Nevertheless, high-throughput screens require efficient and reliable assays that, ideally, are cost-effective and allow for the automatized quantification of traits relevant to these disorders. The island assay is a cost-effective and easily set-up method to evaluate Drosophila locomotor behavior. In this assay, flies are thrown onto a platform from a fixed height. This induces an innate motor response that enables the flies to escape from the platform within seconds. At present, quantitative analyses of filmed island assays are done manually, which is a laborious undertaking, particularly when performing large screens. This manuscript describes the "Drosophila Island Assay" and "Island Assay Analysis" algorithms for high-throughput, automated data processing and quantification of island assay data. In the setup, a simple webcam connected to a laptop collects an image series of the platform while the assay is performed. The "Drosophila Island Assay" algorithm developed for the open-source software Fiji processes these image series and quantifies, for each experimental condition, the number of flies on the platform over time. The "Island Assay Analysis" script, compatible with the free software R, was developed to automatically process the obtained data and to calculate whether treatments/genotypes are statistically different. This greatly improves the efficiency of the island assay and makes it a powerful readout for basic locomotion and flight behavior. It can thus be applied to large screens investigating fly locomotor ability, Drosophila models of movement disorders, and drug efficacy.


Asunto(s)
Drosophila/fisiología , Ensayos Analíticos de Alto Rendimiento/métodos , Locomoción/fisiología , Animales , Conducta Animal/fisiología
15.
J Vis Exp ; (123)2017 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-28518121

RESUMEN

Synaptic morphology is tightly related to synaptic efficacy, and in many cases morphological synapse defects ultimately lead to synaptic malfunction. The Drosophila larval neuromuscular junction (NMJ), a well-established model for glutamatergic synapses, has been extensively studied for decades. Identification of mutations causing NMJ morphological defects revealed a repertoire of genes that regulate synapse development and function. Many of these were identified in large-scale studies that focused on qualitative approaches to detect morphological abnormalities of the Drosophila NMJ. A drawback of qualitative analyses is that many subtle players contributing to NMJ morphology likely remain unnoticed. Whereas quantitative analyses are required to detect the subtler morphological differences, such analyses are not yet commonly performed because they are laborious. This protocol describes in detail two image analysis algorithms "Drosophila NMJ Morphometrics" and "Drosophila NMJ Bouton Morphometrics", available as Fiji-compatible macros, for quantitative, accurate and objective morphometric analysis of the Drosophila NMJ. This methodology is developed to analyze NMJ terminals immunolabeled with the commonly used markers Dlg-1 and Brp. Additionally, its wider application to other markers such as Hrp, Csp and Syt is presented in this protocol. The macros are able to assess nine morphological NMJ features: NMJ area, NMJ perimeter, number of boutons, NMJ length, NMJ longest branch length, number of islands, number of branches, number of branching points and number of active zones in the NMJ terminal.


Asunto(s)
Algoritmos , Drosophila/ultraestructura , Ensayos Analíticos de Alto Rendimiento/métodos , Unión Neuromuscular/ultraestructura , Animales , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Procesamiento de Imagen Asistido por Computador , Larva , Terminales Presinápticos/ultraestructura , Programas Informáticos , Sinapsis/ultraestructura , Factores de Transcripción/química , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética
16.
Nat Genet ; 49(4): 515-526, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28191889

RESUMEN

Gene-disruptive mutations contribute to the biology of neurodevelopmental disorders (NDDs), but most of the related pathogenic genes are not known. We sequenced 208 candidate genes from >11,730 cases and >2,867 controls. We identified 91 genes, including 38 new NDD genes, with an excess of de novo mutations or private disruptive mutations in 5.7% of cases. Drosophila functional assays revealed a subset with increased involvement in NDDs. We identified 25 genes showing a bias for autism versus intellectual disability and highlighted a network associated with high-functioning autism (full-scale IQ >100). Clinical follow-up for NAA15, KMT5B, and ASH1L highlighted new syndromic and nonsyndromic forms of disease.


Asunto(s)
Trastorno Autístico/genética , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/genética , Femenino , Humanos , Masculino , Mutación/genética , Fenotipo
17.
Dis Model Mech ; 10(2): 105-118, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28067622

RESUMEN

A consanguineous family from Pakistan was ascertained to have a novel deafness-dystonia syndrome with motor regression, ichthyosis-like features and signs of sensory neuropathy. By applying a combined strategy of linkage analysis and whole-exome sequencing in the presented family, a homozygous nonsense mutation, c.4G>T (p.Glu2*), in FITM2 was identified. FITM2 and its paralog FITM1 constitute an evolutionary conserved protein family involved in partitioning of triglycerides into cellular lipid droplets. Despite the role of FITM2 in neutral lipid storage and metabolism, no indications for lipodystrophy were observed in the affected individuals. In order to obtain independent evidence for the involvement of FITM2 in the human pathology, downregulation of the single Fitm ortholog, CG10671, in Drosophila melanogaster was pursued using RNA interference. Characteristics of the syndrome, including progressive locomotor impairment, hearing loss and disturbed sensory functions, were recapitulated in Drosophila, which supports the causative nature of the FITM2 mutation. Mutation-based genetic counseling can now be provided to the family and insight is obtained into the potential impact of genetic variation in FITM2.


Asunto(s)
Trastornos Sordoceguera/genética , Proteínas de Drosophila/genética , Distonía/genética , Ictiosis/genética , Discapacidad Intelectual/genética , Proteínas de la Membrana/genética , Actividad Motora , Mutación/genética , Atrofia Óptica/genética , Células Receptoras Sensoriales/patología , Adiposidad , Animales , Audiometría de Tonos Puros , Secuencia de Bases , Niño , Codón sin Sentido/genética , Trastornos Sordoceguera/sangre , Trastornos Sordoceguera/fisiopatología , Modelos Animales de Enfermedad , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Distonía/sangre , Distonía/fisiopatología , Femenino , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HEK293 , Pérdida Auditiva/genética , Homocigoto , Humanos , Ictiosis/complicaciones , Ictiosis/fisiopatología , Discapacidad Intelectual/sangre , Discapacidad Intelectual/fisiopatología , Gotas Lipídicas/metabolismo , Hígado/metabolismo , Locomoción , Masculino , Proteínas de la Membrana/metabolismo , Atrofia Óptica/sangre , Atrofia Óptica/fisiopatología , Linaje , Secuenciación del Exoma , Adulto Joven
18.
PLoS Genet ; 12(5): e1006022, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27166630

RESUMEN

Here we report a stop-mutation in the BOD1 (Biorientation Defective 1) gene, which co-segregates with intellectual disability in a large consanguineous family, where individuals that are homozygous for the mutation have no detectable BOD1 mRNA or protein. The BOD1 protein is required for proper chromosome segregation, regulating phosphorylation of PLK1 substrates by modulating Protein Phosphatase 2A (PP2A) activity during mitosis. We report that fibroblast cell lines derived from homozygous BOD1 mutation carriers show aberrant localisation of the cell cycle kinase PLK1 and its phosphatase PP2A at mitotic kinetochores. However, in contrast to the mitotic arrest observed in BOD1-siRNA treated HeLa cells, patient-derived cells progressed through mitosis with no apparent segregation defects but at an accelerated rate compared to controls. The relatively normal cell cycle progression observed in cultured cells is in line with the absence of gross structural brain abnormalities in the affected individuals. Moreover, we found that in normal adult brain tissues BOD1 expression is maintained at considerable levels, in contrast to PLK1 expression, and provide evidence for synaptic localization of Bod1 in murine neurons. These observations suggest that BOD1 plays a cell cycle-independent role in the nervous system. To address this possibility, we established two Drosophila models, where neuron-specific knockdown of BOD1 caused pronounced learning deficits and significant abnormalities in synapse morphology. Together our results reveal novel postmitotic functions of BOD1 as well as pathogenic mechanisms that strongly support a causative role of BOD1 deficiency in the aetiology of intellectual disability. Moreover, by demonstrating its requirement for cognitive function in humans and Drosophila we provide evidence for a conserved role of BOD1 in the development and maintenance of cognitive features.


Asunto(s)
Proteínas de Ciclo Celular/genética , Cognición , Proteína Fosfatasa 2/genética , Sinapsis/genética , Animales , Segregación Cromosómica/genética , Drosophila/genética , Drosophila/fisiología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Aprendizaje , Ratones , Mitosis/genética , Neuronas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Sinapsis/patología , Quinasa Tipo Polo 1
19.
PLoS Comput Biol ; 12(3): e1004823, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26998933

RESUMEN

The morphology of synapses is of central interest in neuroscience because of the intimate relation with synaptic efficacy. Two decades of gene manipulation studies in different animal models have revealed a repertoire of molecules that contribute to synapse development. However, since such studies often assessed only one, or at best a few, morphological features at a given synapse, it remained unaddressed how different structural aspects relate to one another. Furthermore, such focused and sometimes only qualitative approaches likely left many of the more subtle players unnoticed. Here, we present the image analysis algorithm 'Drosophila_NMJ_Morphometrics', available as a Fiji-compatible macro, for quantitative, accurate and objective synapse morphometry of the Drosophila larval neuromuscular junction (NMJ), a well-established glutamatergic model synapse. We developed this methodology for semi-automated multiparametric analyses of NMJ terminals immunolabeled for the commonly used markers Dlg1 and Brp and showed that it also works for Hrp, Csp and Syt. We demonstrate that gender, genetic background and identity of abdominal body segment consistently and significantly contribute to variability in our data, suggesting that controlling for these parameters is important to minimize variability in quantitative analyses. Correlation and principal component analyses (PCA) were performed to investigate which morphometric parameters are inter-dependent and which ones are regulated rather independently. Based on nine acquired parameters, we identified five morphometric groups: NMJ size, geometry, muscle size, number of NMJ islands and number of active zones. Based on our finding that the parameters of the first two principal components hardly correlated with each other, we suggest that different molecular processes underlie these two morphometric groups. Our study sets the stage for systems morphometry approaches at the well-studied Drosophila NMJ.


Asunto(s)
Algoritmos , Bases de Datos Factuales , Drosophila/citología , Interpretación de Imagen Asistida por Computador/métodos , Modelos Neurológicos , Unión Neuromuscular/citología , Animales , Minería de Datos , Modelos Anatómicos
20.
Hum Mol Genet ; 24(23): 6736-55, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26376863

RESUMEN

ATP6AP2, an essential accessory component of the vacuolar H+ ATPase (V-ATPase), has been associated with intellectual disability (ID) and Parkinsonism. ATP6AP2 has been implicated in several signalling pathways; however, little is known regarding its role in the nervous system. To decipher its function in behaviour and cognition, we generated and characterized conditional knockdowns of ATP6AP2 in the nervous system of Drosophila and mouse models. In Drosophila, ATP6AP2 knockdown induced defective phototaxis and vacuolated photoreceptor neurons and pigment cells when depleted in eyes and altered short- and long-term memory when depleted in the mushroom body. In mouse, conditional Atp6ap2 deletion in glutamatergic neurons (Atp6ap2(Camk2aCre/0) mice) caused increased spontaneous locomotor activity and altered fear memory. Both Drosophila ATP6AP2 knockdown and Atp6ap2(Camk2aCre/0) mice presented with presynaptic transmission defects, and with an abnormal number and morphology of synapses. In addition, Atp6ap2(Camk2aCre/0) mice showed autophagy defects that led to axonal and neuronal degeneration in the cortex and hippocampus. Surprisingly, axon myelination was affected in our mutant mice, and axonal transport alterations were observed in Drosophila. In accordance with the identified phenotypes across species, genome-wide transcriptome profiling of Atp6ap2(Camk2aCre/0) mouse hippocampi revealed dysregulation of genes involved in myelination, action potential, membrane-bound vesicles and motor behaviour. In summary, ATP6AP2 disruption in mouse and fly leads to cognitive impairment and neurodegeneration, mimicking aspects of the neuropathology associated with ATP6AP2 mutations in humans. Our results identify ATP6AP2 as an essential gene for the nervous system.


Asunto(s)
Trastornos del Conocimiento/etiología , Proteínas de Drosophila/genética , Proteínas de la Membrana/genética , Degeneración Nerviosa/etiología , ATPasas de Translocación de Protón/genética , Receptores de Superficie Celular/genética , Animales , Encéfalo/metabolismo , Encéfalo/fisiopatología , Trastornos del Conocimiento/genética , Trastornos del Conocimiento/fisiopatología , Modelos Animales de Enfermedad , Drosophila , Femenino , Técnicas de Silenciamiento del Gen , Discapacidad Intelectual/genética , Masculino , Ratones , Degeneración Nerviosa/patología , Neuronas/metabolismo , Neuronas/fisiología , Neuronas/ultraestructura , Trastornos Parkinsonianos/genética , Sinapsis/metabolismo , Sinapsis/fisiología , Sinapsis/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA