Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biomolecules ; 12(8)2022 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-36008963

RESUMEN

Alternative splicing allows the synthesis of different protein variants starting from a single gene. Human Beclin 1 (BECN1) is a key autophagy regulator that acts as haploinsufficient tumor suppressor since its decreased expression correlates with tumorigenesis and poor prognosis in cancer patients. Recent studies show that BECN1 mRNA undergoes alternative splicing. Here, we report on the isolation and molecular and functional characterization of three BECN1 transcript variants (named BECN1-α, -ß and -γ) in human cancer cells. In ovarian cancer NIHOVCAR3, these splicing variants were found along with the canonical wild-type. BECN1-α lacks 143 nucleotides at its C-terminus and corresponds to a variant previously described. BECN1-ß and -γ lack the BCL2 homology 3 domain and other regions at their C-termini. Following overexpression in breast cancer cells MDA-MB231, we found that BECN1-α stimulates autophagy. Specifically, BECN1-α binds to Parkin and stimulates mitophagy. On the contrary, BECN1-ß reduces autophagy with a dominant negative effect over the endogenous wild-type isoform. BECN1-γ maintains its ability to interact with the vacuolar protein sorting 34 and only has a slight effect on autophagy. It is possible that cancer cells utilize the alternative splicing of BECN1 for modulating autophagy and mitophagy in response to environmental stresses.


Asunto(s)
Proteínas Reguladoras de la Apoptosis , Beclina-1/metabolismo , Neoplasias , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia , Beclina-1/genética , Humanos , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Isoformas de Proteínas/genética
2.
Neurochem Int ; 117: 174-187, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-28532681

RESUMEN

Parkinsonian-like motor deficits in Huntington's Disease (HD) patients are associated with abnormal dopamine neurotransmission in the striatum. Dopamine metabolism leads to the formation of oxidized dopamine quinones that exacerbates mitochondrial dysfunction with production of reactive oxygen species (ROS) that eventually lead to neuronal cell death. We have previously shown that dopamine-induced oxidative stress triggers apoptotic cell death in dopaminergic neuroblastoma SH-SY5Y cells hyper-expressing the mutant polyQ Huntingtin (polyQ-Htt) protein. Dopamine toxicity was paralleled by impaired autophagy clearance of the polyQ-Htt aggregates. In this study, we found that Dopamine affects the stability and function of ATG4, a redox-sensitive cysteine-protein involved in the processing of LC3, a key step in the formation of autophagosomes. Resveratrol, a dietary polyphenol with anti-oxidant and pro-autophagic properties, has shown neuroprotective potential in HD. Yet the molecular mechanism through which Resveratrol can protect HD cells against DA is not known. Here, we show that Resveratrol prevents the generation of ROS, restores the level of ATG4, allows the lipidation of LC3, facilitates the degradation of polyQ-Htt aggregates and protects the cells from Dopamine toxicity. The present findings provide a mechanistic explanation of the neuroprotective activity of Resveratrol and support its inclusion in a therapeutic regimen to slow down HD progression.


Asunto(s)
Proteínas Relacionadas con la Autofagia/metabolismo , Autofagia/efectos de los fármacos , Cisteína Endopeptidasas/metabolismo , Dopamina/toxicidad , Proteína Huntingtina/biosíntesis , Fármacos Neuroprotectores/farmacología , Fagosomas/efectos de los fármacos , Resveratrol/farmacología , Antioxidantes/farmacología , Autofagia/fisiología , Línea Celular Tumoral , Humanos , Proteína Huntingtina/genética , Mutación/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Fagosomas/metabolismo , Fagosomas/patología
3.
Mol Carcinog ; 56(12): 2681-2691, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28856729

RESUMEN

The potential benefit of nutrient starvation in the prevention and treatment of cancer is presently under consideration. Resveratrol (RV), a dietary polyphenol acting as a protein (caloric) restriction mimetic, could substitute for amino acid starvation. The effects of starvation and of caloric restriction are mediated, among others, by autophagy, a process that contributes to cell homeostasis by promoting the lysosomal degradation of damaged and redundant self-constituents. Up-regulation of autophagy favors cell survival under nutrient shortage situation, and may drive cancer cells into a non-replicative, dormant state. Both RV and amino acid starvation effectively induced the aminoacid response and autophagy. These processes were associated with inhibition of the mTOR pathway and disruption of the BECLIN1-BCL-2 complex. The number of transcripts positively impinging on the autophagy pathway was higher in RV-treated than in starved cancer cells. Consistent with our data, it appears that RV treatment is more effective than and can substitute for starvation for inducing autophagy in cancer cells. The present findings are clinically relevant because of the potential therapeutic implications.


Asunto(s)
Aminoácidos/metabolismo , Autofagia/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Estilbenos/farmacología , Antineoplásicos Fitogénicos/farmacología , Autofagia/genética , Western Blotting , Línea Celular Tumoral , Análisis por Conglomerados , Femenino , Humanos , Microscopía Fluorescente , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Resveratrol , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
4.
Biochem J ; 474(15): 2573-2584, 2017 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-28646128

RESUMEN

Mutations of the solute carrier family 4 member 1 (SLC4A1) gene encoding kidney anion (chloride/bicarbonate ion) exchanger 1 (kAE1) can cause genetic distal renal tubular acidosis (dRTA). Different SLC4A1 mutations give rise to mutant kAE1 proteins with distinct defects in protein trafficking. The mutant kAE1 protein may be retained in endoplasmic reticulum (ER) or Golgi apparatus, or mis-targeted to the apical membrane, failing to display its function at the baso-lateral membrane. The ER-retained mutant kAE1 interacts with calnexin chaperone protein; disruption of this interaction permits the mutant kAE1 to reach the cell surface and display anion exchange activity. However, the mechanism of Golgi retention of mutant kAE1 G701D protein, which is otherwise functional, is still unclear. In the present study, we show that Golgi retention of kAE1 G701D is due to a stable interaction with the Golgi-resident protein, coat protein complex I (COPI), that plays a role in retrograde vesicular trafficking and Golgi-based quality control. The interaction and co-localization of kAE1 G701D with the γ-COPI subunit were demonstrated in human embryonic kidney (HEK-293T) cells by co-immunoprecipitation and immunofluorescence staining. Small interference RNA (siRNA) silencing of COPI expression in the transfected HEK-293T cells increased the cell surface expression of transgenic kAE1 G701D, as shown by immunofluorescence staining. Our data unveil the molecular mechanism of Golgi retention of kAE1 G701D and suggest that disruption of the COPI-kAE1 G701D interaction could be a therapeutic strategy to treat dRTA caused by this mutant.


Asunto(s)
Acidosis Tubular Renal/metabolismo , Proteína 1 de Intercambio de Anión de Eritrocito/genética , Proteína Coatómero/metabolismo , Aparato de Golgi/metabolismo , Mutación/genética , Proteínas Adaptadoras Transductoras de Señales , Proteína 1 de Intercambio de Anión de Eritrocito/metabolismo , Técnicas de Silenciamiento del Gen , Aparato de Golgi/ultraestructura , Células HEK293 , Humanos , Riñón/patología , Riñón/ultraestructura , Modelos Biológicos , Proteínas Mutantes/metabolismo , Unión Proteica , Subunidades de Proteína/metabolismo , ARN Interferente Pequeño/metabolismo
5.
Neurochem Int ; 101: 132-143, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27840125

RESUMEN

Neuronal cell death in Huntington's Disease (HD) is associated with the abnormal expansions of a polyglutamine (polyQ) tract in the huntingtin protein (Htt) at the N-terminus that causes the misfolding and aggregation of the mutated protein (mHtt). Autophagy-lysosomal degradation of Htt aggregates may protect the neurons in HD. HD patients eventually manifest parkinsonian-like symptoms, which underlie defects in the dopaminergic system. We hypothesized that dopamine (DA) exacerbates the toxicity in affected neurons by over-inducing an oxidative stress that negatively impinges on the autophagy clearance of mHtt and thus precipitating neuronal cell death. Here we show that the hyper-expression of mutant (>113/150) polyQ Htt is per se toxic to dopaminergic human neuroblastoma SH-SY5Y cells, and that DA exacerbates this toxicity leading to apoptosis and secondary necrosis. DA toxicity is mediated by ROS production (mainly anion superoxide) that elicits a block in the formation of autophagosomes. We found that the pre-incubation with N-Acetyl-l-Cysteine (a quinone reductase inducer) or Deferoxamine (an iron chelator) prevents the generation of ROS, restores the autophagy degradation of mHtt and preserves the cell viability in SH-SY5Y cells expressing the polyQ Htt and exposed to DA. The present findings suggest that DA-induced impairment of autophagy underlies the parkinsonism in HD patients. Our data provide a mechanistic explanation of the DA toxicity in dopaminergic neurons expressing the mHtt and support the use of anti-oxidative stress therapeutics to restore protective autophagy in order to slow down the neurodegeneration in HD patients.


Asunto(s)
Antioxidantes/farmacología , Autofagia/efectos de los fármacos , Dopamina/farmacología , Estrés Oxidativo/efectos de los fármacos , Autofagia/fisiología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Dopamina/metabolismo , Humanos , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/genética , Proteínas del Tejido Nervioso/metabolismo , Neuroblastoma/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Oxidantes/metabolismo
6.
Oncotarget ; 7(51): 84999-85020, 2016 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-27829222

RESUMEN

GLUT1 is the facilitative transporter playing the major role in the internalization of glucose. Basally, GLUT1 resides on vesicles located in a para-golgian area, and is translocated onto the plasmamembrane upon activation of the PI3KC1-AKT pathway. In proliferating cancer cells, which demand a high quantity of glucose for their metabolism, GLUT1 is permanently expressed on the plasmamembrane. This is associated with the abnormal activation of the PI3KC1-AKT pathway, consequent to the mutational activation of PI3KC1 and/or the loss of PTEN. The latter, in fact, could antagonize the phosphorylation of AKT by limiting the availability of Phosphatidylinositol (3,4,5)-trisphosphate. Here, we asked whether PTEN could control the plasmamembrane expression of GLUT1 also through its protein-phosphatase activity on AKT. Experiments of co-immunoprecipitation and in vitro de-phosphorylation assay with homogenates of cells transgenically expressing the wild type or knocked-down mutants (lipid-phosphatase, protein-phosphatase, or both) isoforms demonstrated that indeed PTEN physically interacts with AKT and drives its dephosphorylation, and so limiting the expression of GLUT1 at the plasmamembrane. We also show that growth factors limit the ability of PTEN to dephosphorylate AKT. Our data emphasize the fact that PTEN acts in two distinct steps of the PI3k/AKT pathway to control the expression of GLUT1 at the plasmamembrane and, further, add AKT to the list of the protein substrates of PTEN.


Asunto(s)
Membrana Celular/metabolismo , Transportador de Glucosa de Tipo 1/metabolismo , Glucosa/metabolismo , Proteína Oncogénica v-akt/metabolismo , Neoplasias Ováricas/metabolismo , Fosfohidrolasa PTEN/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Extractos Celulares , Línea Celular Tumoral , Femenino , Humanos , Fosfohidrolasa PTEN/genética , Fosforilación , Unión Proteica , ARN Interferente Pequeño/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...