Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev E ; 107(2-1): 024608, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36932547

RESUMEN

The gravitational settling of oil droplets solubilizing in an aqueous micellar solution contained in a capillary channel is investigated. The motion of these active droplets reflects a competition between gravitational and Marangoni forces, the latter due to interfacial tension gradients generated by differences in filled-micelle concentrations along the oil-water interface. This competition is studied by varying the surfactant concentration, the density difference between the droplet and the continuous phase, and the viscosity of the continuous phase. The Marangoni force enhances the settling speed of an active droplet when compared to the Hadamard-Rybczynski prediction for a (surfactant free) droplet settling in Stokes flow. The Marangoni force can also induce lateral droplet motion, suggesting that the Marangoni and gravitational forces are not always aligned. The decorrelation rate (α) of the droplet motion, measured as the initial slope of the velocity autocorrelation and indicative of the extent to which the Marangoni and gravitational forces are aligned during settling, is examined as a function of the droplet size: correlated motion (small values of α) is observed at both small and large droplet radii, whereas significant decorrelation can occur between these limits. This behavior of active droplets settling in a capillary channel is in marked contrast to that observed in a dish, where the decorrelation rate increases with the droplet radius before saturating at large values of droplet radius. A simple relation for the crossover radius at which the maximal value of α occurs for an active settling droplet is proposed.

2.
Chem Eng J ; 4562023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36712894

RESUMEN

Gas-sensitive semiconducting nanomaterials (e.g., metal oxides, graphene oxides, and transition metal dichalcogenides) and their heterojunctions hold great promise in chemiresistive gas sensors. However, they often require a separate synthesis method (e.g., hydrothermal, so-gel, and co-precipitation) and their integration on interdigitated electrodes (IDE) via casting is also associated with weak interfacial properties. This work demonstrates in situ laser-assisted synthesis and patterning of various sensing nanomaterials and their heterojunctions on laser-induced graphene (LIG) foam to form LIG composites as a flexible and stretchable gas sensing platform. The porous LIG line or pattern with nanomaterial precursors dispensed on top is scribed by laser to allow for in situ growth of corresponding nanomaterials. The versatility of the proposed method is highlighted through the creation of different types of gas-sensitive materials, including transition metal dichalcogenide (e.g., MoS2), metal oxide (e.g., CuO), noble metal-doped metal oxide (e.g., Ag/ZnO) and composite metal oxides (e.g., In2O3/Cr2O3). By eliminating the IDE and separate heaters, the LIG gas sensing platform with self-heating also decreases the device complexity. The limit of detection (LOD) of the LIG gas sensor with in situ synthesized MoS2, CuO, and Ag/ZnO to NO2, H2S, and trimethylamine (TMA) is 2.7, 9.8, and 5.6 ppb, respectively. Taken together with the high sensitivity, good selectivity, rapid response/recovery, and tunable operating temperature, the integrated LIG gas sensor array can identify multiple gas species in the environment or exhaled breath.

3.
Angew Chem Int Ed Engl ; 61(32): e202204510, 2022 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-35678216

RESUMEN

Micellar solubilization is a transport process occurring in surfactant-stabilized emulsions that can lead to Marangoni flow and droplet motility. Active droplets exhibit self-propulsion and pairwise repulsion due to solubilization processes and/or solubilization products raising the droplet's interfacial tension. Here, we report emulsions with the opposite behavior, wherein solubilization decreases the interfacial tension and causes droplets to attract. We characterize the influence of oil chemical structure, nonionic surfactant structure, and surfactant concentration on the interfacial tensions and Marangoni flows of solubilizing oil-in-water drops. Three regimes corresponding to droplet "attraction", "repulsion" or "inactivity" are identified. We believe these studies contribute to a fundamental understanding of solubilization processes in emulsions and provide guidance as to how chemical parameters can influence the dynamics and chemotactic interactions between active droplets.


Asunto(s)
Tensoactivos , Agua , Emulsiones/química , Micelas , Tensoactivos/química , Agua/química
4.
ACS Appl Mater Interfaces ; 14(24): 28163-28173, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35686829

RESUMEN

Fabrication and processing approaches that facilitate the ease of patterning and the integration of nanomaterials into sensor platforms are of significant utility and interest. In this work, we report the use of laser-induced thermal voxels (LITV) to fabricate microscale, planar gas sensors directly from solutions of metal salts. LITV offers a facile platform to directly integrate nanocrystalline metal oxide and mixed metal oxide materials onto heating platforms, with access to a wide variety of compositions and morphologies including many transition metals and noble metals. The unique patterning and synthesis flexibility of LITV enable the fabrication of chemically and spatially tailorable microscale sensing devices. We investigate the sensing performance of a representative set of n-type and p-type LITV-deposited metal oxides and their mixtures (CuO, NiO, CuO/ZnO, and Fe2O3/Pt) in response to reducing and oxidizing gases (H2S, NO2, NH3, ethanol, and acetone). These materials show a broad range of sensitivities and notably a strong response of NiO to ethanol and acetone (407 and 301% R/R0 at 250 °C, respectively), along with a 5- to 20-fold sensitivity enhancement for CuO/ZnO to all gases measured over pure CuO, highlighting the opportunities of LITV for the creation of mixed-material microscale sensors.

5.
Inorg Chem Front ; 7(24): 4813-4821, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33520236

RESUMEN

Metal-organic frameworks (MOFs) have emerged as promising candidates for a wide range of applications due to their high surface area and customizable structures, however, the minimal external hydrophilicity of MOFs has limited their biomedical implementations. Structuring of MOFs within polymer frameworks is an approach used to create hybrid materials that retain many of the MOF characteristics (e.g. high adsorption capacity) but expand the range of mechanical and surface properties as well as form factors accessible. Using this approach, hybridizing MOFs with hydrophilic hydrogels can give rise to materials with improved hydrophilicity and biocompatibility. Here, we describe the synthesis of the first Zr-based MOF-hydrogel hybrid material (composite 3) using a green chemistry approach, in which only water was used as the solvent and relatively low temperature (50 °C) was applied. Using methylene blue (MB) as a probe molecule, composite 3 exhibited greater adsorption capacity than the MOF or the hydrogel alone in aqueous solution at most tested pH values (all except pH 13). At an initial MB concentration of 0.0096 mg/mL (30.014uM) and neutral pH conditions, this new hybrid presented the highest loading of MB among similar materials (MB adsorbed = 4.361 ± 0.092 mg MB/g Zr, partition coefficient = 0.172 ± 0.004 mg/g/uM) and largely retained its adsorption capacity under varied conditions (pH 1-13 and 0.2-1.0M NaCl), rendering possible applications in drug delivery and the removal of tumor contrast agent/dye with minimal leakage due to its broad chemical stability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...