Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-38989580

RESUMEN

BACKGROUND: Aortic stenosis (AS) is driven by progressive inflammatory and fibrocalcific processes regulated by circulating inflammatory and valve resident endothelial and interstitial cells. The impact of platelets, platelet-derived mediators, and platelet-monocyte interactions on the acceleration of local valvular inflammation and mineralization is presently unknown. METHODS: We prospectively enrolled 475 consecutive patients with severe symptomatic AS undergoing aortic valve replacement. Clinical workup included repetitive echocardiography, analysis of platelets, monocytes, chemokine profiling, aortic valve tissue samples for immunohistochemistry, and gene expression analysis. RESULTS: The patients were classified as fast-progressive AS by the median ∆Vmax of 0.45 m/s per year determined by echocardiography. Immunohistological aortic valve analysis revealed enhanced cellularity in fast-progressive AS (slow- versus fast-progressive AS; median [interquartile range], 247 [142.3-504] versus 717.5 [360.5-1234]; P<0.001) with less calcification (calcification area, mm2: 33.74 [27.82-41.86] versus 20.54 [13.52-33.41]; P<0.001). MIF (macrophage migration inhibitory factor)-associated gene expression was significantly enhanced in fast-progressive AS accompanied by significantly elevated MIF plasma levels (mean±SEM; 6877±379.1 versus 9959±749.1; P<0.001), increased platelet activation, and decreased intracellular MIF expression indicating enhanced MIF release upon platelet activation (CD62P, %: median [interquartile range], 16.8 [11.58-23.8] versus 20.55 [12.48-32.28], P=0.005; MIF, %: 4.85 [1.48-9.75] versus 2.3 [0.78-5.9], P<0.001). Regression analysis confirmed that MIF-associated biomarkers are strongly associated with an accelerated course of AS. CONCLUSIONS: Our findings suggest a key role for platelet-derived MIF and its interplay with circulating and valve resident monocytes/macrophages in local and systemic thromboinflammation during accelerated AS. MIF-based biomarkers predict an accelerated course of AS and represent a novel pharmacological target to attenuate progression of AS.

2.
Sci Rep ; 14(1): 6089, 2024 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-38480746

RESUMEN

Coronary artery disease (CAD) often leads to adverse events resulting in significant disease burdens. Underlying risk factors often remain inapparent prior to disease incidence and the cardiovascular (CV) risk is not exclusively explained by traditional risk factors. Platelets inherently promote atheroprogression and enhanced platelet functions and distinct platelet lipid species are associated with disease severity in patients with CAD. Lipidomics data were acquired using mass spectrometry and processed alongside clinical data applying machine learning to model estimates of an increased CV risk in a consecutive CAD cohort (n = 595). By training machine learning models on CV risk measurements, stratification of CAD patients resulted in a phenotyping of risk groups. We found that distinct platelet lipids are associated with an increased CV or bleeding risk and independently predict adverse events. Notably, the addition of platelet lipids to conventional risk factors resulted in an increased diagnostic accuracy of patients with adverse CV events. Thus, patients with aberrant platelet lipid signatures and platelet functions are at elevated risk to develop adverse CV events. Machine learning combining platelet lipidome data and common clinical parameters demonstrated an increased diagnostic value in patients with CAD and might improve early risk discrimination and classification for CV events.


Asunto(s)
Carnitina/análogos & derivados , Enfermedad de la Arteria Coronaria , Humanos , Enfermedad de la Arteria Coronaria/diagnóstico , Hemorragia , Factores de Riesgo , Aprendizaje Automático , Lisofosfolípidos , Lípidos
3.
Biochem Biophys Res Commun ; 701: 149629, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38330730

RESUMEN

Accumulation of free heme B in the plasma can be the result of severe hemolytic events, when the scavenger system for free hemoglobin and heme B is overwhelmed. Free heme B can be oxidized into toxic hemin, which has been proven to activate platelet degranulation and aggregation and promote thrombosis. In the present study we analyzed the effect of hemin on the activation-mediated lysosomal degranulation and CD63 surface expression on platelets using classic flow cytometry and fluorescence microscopy techniques. Classical platelet activators were used as control to distinguish the novel effects of hemin from known activation pathways. CD63 is a tetraspanin protein, also known as lysosomal-associated membrane protein 3 or LAMP-3. In resting platelets CD63 is located within the membrane of delta granules and lysosomes of platelet, from where it is integrated into the platelet outer membrane upon stimulation. We were able to show that hemin like the endogenous platelet activators ADP, collagen or thrombin does provoke CD63 re-localization. Interestingly, only hemin-induced CD63 externalization is dependent on the subtilisin-like pro-protein convertase furin as shown by inhibitor experiments. Furthermore, we were able to demonstrate that hemin induces lysosome secretion, a source of the hemin-mediated CD63 presentation. Again, only the hemin-induced lysosome degranulation is furin dependent. In summary we have shown that the pro-protein convertase furin plays an important role in hemin-mediated lysosomal degranulation and CD63 externalization.


Asunto(s)
Furina , Hemina , Glicoproteínas de Membrana Plaquetaria , Tetraspanina 30 , Antígenos CD/metabolismo , Plaquetas/metabolismo , Furina/metabolismo , Hemina/metabolismo , Proteínas de Membrana de los Lisosomas , Activación Plaquetaria , Glicoproteínas de Membrana Plaquetaria/metabolismo , Tetraspanina 30/metabolismo , Humanos
4.
Thromb Res ; 234: 63-74, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38171216

RESUMEN

BACKGROUND AND AIMS: Hemolysis is a known risk factor for thrombosis resulting in critical limb ischemia and microcirculatory disturbance and organ failure. Intravasal hemolysis may lead to life-threatening complications due to uncontrolled thrombo-inflammation. Until now, conventional antithrombotic therapies failed to control development and progression of these thrombotic events. Thus, the pathophysiology of these thrombotic events needs to be investigated to unravel underlying pathways and thereby identify targets for novel treatment strategies. METHODS: Here we used classical experimental set-ups as well as high-end flow cytometry, metabolomics and lipidomic analysis to in-depth analyze the effects of hemin on platelet physiology and morphology. RESULTS: Hemin does strongly and swiftly induce platelet activation and this process is modulated by the sGC-cGMP-cGKI signaling axis. cGMP modulation also reduced the pro-aggregatory potential of plasma derived from patients with hemolysis. Furthermore, hemin-induced platelet death evokes distinct platelet subpopulations. Typical cell death markers, such as ROS, were induced by hemin-stimulation and the platelet lipidome was specifically altered by high hemin concentration. Specifically, arachidonic acid derivates, such as PGE2, TXB2 or 12-HHT, were significantly increased. Balancing the cGMP levels by modulation of the sGC-cGMP-cGKI axis diminished the ferroptotic effect of hemin. CONCLUSION: We found that cGMP modulates hemin-induced platelet activation and thrombus formation in vitro and cGMP effects hemin-mediated platelet death and changes in the platelet lipidome. Thus, it is tempting to speculate that modulating platelet cGMP levels may be a novel strategy to control thrombosis and critical limb ischemia in patients with hemolytic crisis.


Asunto(s)
Hemina , Trombosis , Humanos , Hemina/farmacología , Hemina/metabolismo , Isquemia Crónica que Amenaza las Extremidades , Hemólisis , Microcirculación , Plaquetas/metabolismo , Trombosis/metabolismo
5.
Clin Res Cardiol ; 112(11): 1664-1678, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37470807

RESUMEN

BACKGROUND AND AIMS: Patients with cardiovascular disease (CVD) are at high risk to develop adverse events. The distinct risk of developing adverse cardiovascular (CV) events is not solely explained by traditional risk factors. Platelets are essentially involved in progression of CVD including coronary artery disease (CAD) and platelet hyperreactivity leads to development of adverse CV events. Alterations in the platelet lipidome lead to platelet hyperresponsiveness and thus might alter the individual risk profile. In this study, we investigate the platelet lipidome of CAD patients by untargeted lipidomics and elucidate alterations in the lipid composition of patients with adverse CV events. METHODS: We characterized the platelet lipidome in a large consecutive CAD cohort (n = 1057) by an untargeted lipidomics approach using liquid chromatography coupled to mass spectrometry. RESULTS: The platelet lipidome in this study identified 767 lipids and characteristic changes occurred in patients with adverse CV events. The most prominent upregulated lipids in patients with cardiovascular events primarily belong to the class of phospholipids and fatty acyls. Further, upregulated platelet lipids are associated with an increased cardiovascular or bleeding risk and independently associated with adverse events. In addition, alterations of the platelet lipidome are associated with modulation of in vitro platelet functions. CONCLUSIONS: Our results reveal that the composition of the platelet lipidome is altered in CVD patients with an increased cardiovascular risk and distinct platelet lipids may indicate adverse events. Results of this study may contribute to improved risk discrimination and classification for cardiovascular events in patients with CVD. Main findings of this study and hypothetical impact of altered platelet lipid signatures in patients with adverse cardiovascular events on platelet function and clinical outcome. LPE lysophosphatidylethanolamines, CAR acylcarnitines, FA fatty acids.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de la Arteria Coronaria , Humanos , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/etiología , Factores de Riesgo , Lipidómica , Enfermedad de la Arteria Coronaria/diagnóstico , Factores de Riesgo de Enfermedad Cardiaca , Lípidos
6.
Thromb Haemost ; 123(7): 679-691, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37037200

RESUMEN

INTRODUCTION: Hemolysis results in release of free hemoglobin and hemin liberation from erythrocytes. Hemin has been described to induce platelet activation and to trigger thrombosis. METHODS: We evaluated the effect of hemin on platelet function and surface expression of the platelet collagen receptor glycoprotein VI (GPVI). Isolated platelets were stimulated with increasing concentrations of hemin. RESULTS: We found that hemin strongly enhanced platelet activation, aggregation, and aggregate formation on immobilized collagen under flow. In contrast, we found that surface expression of GPVI was significantly reduced upon hemin stimulation with high hemin concentrations indicating that hemin-induced loss of surface GPVI does not hinder platelet aggregation. Loss of hemin-induced surface expression of GPVI was caused by shedding of the ectodomain of GPVI as verified by immunoblotting and is independent of the GPVI or CLEC-2 mediated ITAM (immunoreceptor-tyrosine-based-activation-motif) signaling pathway as inhibitor studies revealed. Hemin-induced GPVI shedding was independent of metalloproteinases such as ADAM10 or ADAM17, which were previously described to regulate GPVI degradation. Similarly, concentration-dependent shedding of CD62P was also induced by hemin. Unexpectedly, we found that the subtilisin-like proprotein convertase furin controls hemin-dependent GPVI shedding as shown by inhibitor studies using the specific furin inhibitors SSM3 and Hexa-D-arginine. In the presence of SSM3 and Hexa-D-arginine, hemin-associated GPVI degradation was substantially reduced. Further, SSM3 inhibited hemin-induced but not CRP-XL-induced platelet aggregation and thrombus formation, indicating that furin controls specifically hemin-associated platelet functions. CONCLUSION: In summary, we describe a novel mechanism of hemin-dependent GPVI shedding and platelet function mediated by furin.


Asunto(s)
Furina , Hemina , Humanos , Hemina/farmacología , Hemina/metabolismo , Furina/metabolismo , Furina/farmacología , Glicoproteínas de Membrana Plaquetaria/metabolismo , Plaquetas/metabolismo , Agregación Plaquetaria , Activación Plaquetaria
7.
Thromb Haemost ; 123(6): 585-596, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36898406

RESUMEN

BACKGROUND: Platelets are key players in the pathophysiology of coronary artery disease (CAD) and platelet hyperreactivity leads to increased risk of developing adverse cardiovascular events. Further, significant changes in the platelet lipidome occur in patients with acute coronary syndrome (ACS) and critically regulated lipids lead to platelet hyperresponsiveness. Statin treatment is crucial in the treatment and prevention of patients with CAD by remodeling lipid metabolism. OBJECTIVE: In this study, we investigate the platelet lipidome of CAD patients by untargeted lipidomics, highlighting significant changes between statin-treated and naïve patients. METHODS: We characterized the platelet lipidome in a CAD cohort (n = 105) by an untargeted lipidomics approach using liquid chromatography coupled to mass spectrometry. RESULTS: Among the annotated lipids, 41 lipids were significantly upregulated in statin-treated patients, whereas 6 lipids were downregulated compared to naïve patients. The most prominent upregulated lipids in statin-treated patients belong to the class of triglycerides, cholesteryl esters, palmitic acid, and oxidized phospholipids, whereas mainly glycerophospholipids were downregulated compared to untreated patients. A more pronounced effect of statin treatment on the platelet lipidome was observed in ACS patients. We further highlight a dose-dependent influence on the platelet lipidome. CONCLUSION: Our results reveal that the platelet lipidome is altered in CAD patients with statin treatment and upregulated lipids embody mainly characteristic triglycerides, whereas downregulated lipids mostly compromise glycerophospholipids, which may play a role in the pathophysiology of CAD. Results of this study may contribute to the understanding of statin treatment softening the lipid phenotype.


Asunto(s)
Síndrome Coronario Agudo , Enfermedad de la Arteria Coronaria , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Plaquetas/metabolismo , Lipidómica , Enfermedad de la Arteria Coronaria/metabolismo , Triglicéridos/metabolismo , Síndrome Coronario Agudo/metabolismo , Glicerofosfolípidos/metabolismo
8.
Biomarkers ; 28(1): 97-110, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36377411

RESUMEN

INTRODUCTION: Patients with cardiovascular disease (CVD) and acute SARS-CoV-2 infection might show an altered immune response during COVID-19. MATERIAL AND METHODS: Twenty-three patients with CVD and SARS-CoV-2 infection were prospectively enrolled and received a cardiological assessment at study entry and during follow-up visit. Inclusion criteria of our study were age older than 18 years, presence of CVD, and acute SARS-CoV-2 infection. The median age of the patient cohort was 69 (IQR 55-79) years. 12 (52.2%) patients were men. Peripheral monocytes and chemokine/cytokine profiles were analysed. RESULTS: Numbers of classical and non-classical monocytes were significantly decreased during acute SARS-CoV-2 infection compared to 3-month recovery. While classical monocytes reached the expected level in peripheral blood after 3 months, the number of non-classical monocytes remained significantly reduced. DISCUSSION: All three monocyte subsets exhibited changes of established adhesion and activation markers. Interestingly, they also expressed higher levels of pro-inflammatory cytokines like macrophage migration inhibitory factor (MIF) at the time of recovery, although MIF was only slightly increased during the acute phase. CONCLUSION: Changes of monocyte phenotypes and increased MIF expression after 3-month recovery from acute SARS-CoV-2 infection may indicate persistent, possibly long-lasting, pro-inflammatory monocyte function in CVD patients.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Monocitos , Citocinas , Quimiocinas
9.
Nat Commun ; 13(1): 1823, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35383158

RESUMEN

Platelet activation plays a critical role in thrombosis. Inhibition of platelet activation is a cornerstone in treatment of acute organ ischemia. Platelet ACKR3 surface expression is independently associated with all-cause mortality in CAD patients. In a novel genetic mouse strain, we show that megakaryocyte/platelet-specific deletion of ACKR3 results in enhanced platelet activation and thrombosis in vitro and in vivo. Further, we performed ischemia/reperfusion experiments (transient LAD-ligation and tMCAO) in mice to assess the impact of genetic ACKR3 deficiency in platelets on tissue injury in ischemic myocardium and brain. Loss of platelet ACKR3 enhances tissue injury in ischemic myocardium and brain and aggravates tissue inflammation. Activation of platelet-ACKR3 via specific ACKR3 agonists inhibits platelet activation and thrombus formation and attenuates tissue injury in ischemic myocardium and brain. Here we demonstrate that ACKR3 is a critical regulator of platelet activation, thrombus formation and organ injury following ischemia/reperfusion.


Asunto(s)
Daño por Reperfusión , Trombosis , Animales , Plaquetas/metabolismo , Humanos , Ratones , Activación Plaquetaria , Reperfusión , Daño por Reperfusión/genética , Daño por Reperfusión/metabolismo , Trombosis/metabolismo
10.
Cardiovasc Res ; 118(8): 1904-1916, 2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34323932

RESUMEN

AIMS: Platelets play a key role in the pathophysiology of coronary artery disease (CAD) and patients with enhanced platelet activation are at increased risk to develop adverse cardiovascular events. Beyond reliable cardiovascular risk factors such as dyslipoproteinaemia, significant changes of platelet lipids occur in patients with CAD. In this study, we investigate the platelet lipidome by untargeted liquid chromatography-mass spectrometry, highlighting significant changes between acute coronary syndrome (ACS) and chronic coronary syndrome (CCS) patients. Additionally, we classify the platelet lipidome, spotlighting specific glycerophospholipids as key players in ACS patients. Furthermore, we examine the impact of significantly altered lipids in ACS on platelet-dependent thrombus formation and aggregation. METHODS AND RESULTS: In this consecutive study, we characterized the platelet lipidome in a CAD cohort (n = 139) and showed significant changes of lipids between patients with ACS and CCS. We found that among 928 lipids, 7 platelet glycerophospholipids were significantly up-regulated in ACS, whereas 25 lipids were down-regulated compared to CCS. The most prominent up-regulated lipid in ACS, PC18:0 (PC 10:0-8:0), promoted platelet activation and ex vivo platelet-dependent thrombus formation. CONCLUSIONS: Our results reveal that the platelet lipidome is altered in ACS and up-regulated lipids embody primarily glycerophospholipids. Alterations of the platelet lipidome, especially of medium chain lipids, may play a role in the pathophysiology of ACS.


Asunto(s)
Síndrome Coronario Agudo , Enfermedad de la Arteria Coronaria , Trombosis , Plaquetas , Glicerofosfolípidos , Humanos , Lipidómica , Lípidos
11.
JACC Cardiovasc Imaging ; 15(3): 445-456, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34656480

RESUMEN

OBJECTIVES: The purpose of this study was to investigate the diagnostic value of simultaneous hybrid cardiac magnetic resonance (CMR) and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) for detection and differentiation of active (aCS) from chronic (cCS) cardiac sarcoidosis. BACKGROUND: Late gadolinium enhancement (LGE) CMR and FDG-PET are both established imaging techniques for the detection of CS. However, there are limited data regarding the value of a comprehensive simultaneous hybrid CMR/FDG-PET imaging approach that includes CMR mapping techniques. METHODS: Forty-three patients with biopsy-proven extracardiac sarcoidosis (median age: 48 years, interquartile range: 37-57 years, 65% male) were prospectively enrolled for evaluation of suspected CS. After dietary preparation for suppression of myocardial glucose metabolism, patients were evaluated on a 3-T hybrid PET/MR scanner. The CMR protocol included T1 and T2 mapping, myocardial function, and LGE imaging. We assumed aCS if PET and CMR (ie, LGE or T1/T2 mapping) were both positive (PET+/CMR+), cCS if PET was negative but CMR was positive (PET-/CMR+), and no CS if patients were CMR negative regardless of PET findings. RESULTS: Among the 43 patients, myocardial glucose uptake was suppressed successfully in 36 (84%). Hybrid CMR/FDG-PET revealed aCS in 13 patients (36%), cCS in 5 (14%), and no CS in 18 (50%). LGE was present in 14 patients (39%); T1 mapping was abnormal in 10 (27%) and T2 mapping abnormal in 2 (6%). CS was diagnosed based on abnormal T1 mapping in 4 out of 18 CS patients (22%) who were LGE negative. PET FDG uptake was present in 17 (47%) patients. CONCLUSIONS: Comprehensive simultaneous hybrid CMR/FDG-PET imaging is useful for the detection of CS and provides additional value for identifying active disease. Our results may have implications for enhanced diagnosis as well as improved identification of patients with aCS in whom anti-inflammatory therapy may be most beneficial.


Asunto(s)
Cardiomiopatías , Miocarditis , Sarcoidosis , Cardiomiopatías/diagnóstico por imagen , Cardiomiopatías/patología , Medios de Contraste , Femenino , Fluorodesoxiglucosa F18 , Gadolinio , Humanos , Imagen por Resonancia Magnética/métodos , Espectroscopía de Resonancia Magnética , Masculino , Persona de Mediana Edad , Tomografía de Emisión de Positrones/métodos , Valor Predictivo de las Pruebas , Radiofármacos , Sarcoidosis/diagnóstico por imagen , Sarcoidosis/patología , Tomografía Computarizada por Rayos X
12.
Int J Mol Sci ; 22(20)2021 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-34681838

RESUMEN

Platelets play a significant role in atherothrombosis. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is critically involved in the regulation of LDL metabolism and interacts with platelet function. The effect of PCSK9 in platelet function is poorly understood. The authors of this article sought to characterize platelets as a major source of PCSK9 and PCSK9's role in atherothrombosis. In a large cohort of patients with coronary artery disease (CAD), platelet count, platelet reactivity, and platelet-derived PCSK9 release were analyzed. The role of platelet PCSK9 on platelet and monocyte function was investigated in vitro. Platelet count and hyper-reactivity correlated with plasma LDL in CAD. The circulating platelets express on their surface and release substantial amounts of PCSK9. Release of PCSK9 augmented platelet-dependent thrombosis, monocyte migration, and differentiation into macrophages/foam cells. Platelets and PCSK9 accumulated in tissue derived from atherosclerotic carotid arteries in areas of macrophages. PCSK9 inhibition reduced platelet activation and platelet-dependent thrombo-inflammation. The authors identified platelets as a source of PCSK9 in CAD, which may have an impact on LDL metabolism. Furthermore, platelet-derived PCSK9 contributes to atherothrombosis, and inhibition of PCSK9 attenuates thrombo-inflammation, which may contribute to the reported beneficial clinical effects.


Asunto(s)
Aterosclerosis/metabolismo , Plaquetas/fisiología , Enfermedad de la Arteria Coronaria/metabolismo , Lipoproteínas LDL/metabolismo , Proproteína Convertasa 9/fisiología , Anciano , Anciano de 80 o más Años , Diferenciación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Estudios de Cohortes , Femenino , Humanos , Masculino , Persona de Mediana Edad , Activación Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Recuento de Plaquetas/estadística & datos numéricos , Trombosis/metabolismo
14.
Cardiovasc Res ; 117(3): 903-917, 2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-32239134

RESUMEN

AIMS: Beyond classical roles in thrombosis and haemostasis, it becomes increasingly clear that platelets contribute as key players to inflammatory processes. The involvement of platelets in these processes is often mediated through a variety of platelet-derived chemokines which are released upon activation and act as paracrine and autocrine factors. In this study, we investigate CXCL14, a newly described platelet chemokine and its role in thrombus formation as well as monocyte and platelet migration. In addition, we examine the chemokine receptor CXCR4 as a possible receptor for CXCL14 on platelets. Furthermore, with the use of artificially generated platelets derived from induced pluripotent stem cells (iPSC), we investigate the importance of CXCR4 for CXCL14-mediated platelet functions. METHODS AND RESULTS: In this study, we showed that CXCL14 deficient platelets reveal reduced thrombus formation under flow compared with wild-type platelets using a standardized flow chamber. Addition of recombinant CXCL14 normalized platelet-dependent thrombus formation on collagen. Furthermore, we found that CXCL14 is a chemoattractant for platelets and mediates migration via CXCR4. CXCL14 promotes platelet migration of platelets through the receptor CXCR4 as evidenced by murine CXCR4-deficient platelets and human iPSC-derived cultured platelets deficient in CXCR4. We found that CXCL14 directly interacts with the CXCR4 as verified by immunoprecipitation and confocal microscopy. CONCLUSIONS: Our results reveal CXCL14 as a novel platelet-derived chemokine that is involved in thrombus formation and platelet migration. Furthermore, we identified CXCR4 as principal receptor for CXCL14, an interaction promoting platelet migration.


Asunto(s)
Plaquetas/metabolismo , Quimiocinas CXC/metabolismo , Quimiotaxis , Monocitos/metabolismo , Receptores CXCR4/metabolismo , Trombosis/metabolismo , Animales , Línea Celular , Quimiocinas CXC/genética , Quimiotaxis de Leucocito , Células Madre Pluripotentes Inducidas/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores CXCR4/genética , Transducción de Señal , Trombosis/sangre , Trombosis/genética
15.
Cardiovasc Res ; 117(1): 224-239, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33188677

RESUMEN

AIMS: To elucidate the prognostic role of monocytes in the immune response of patients with coronary artery disease (CAD) at risk for life-threatening heart and lung injury as major complications of SARS-CoV-2 infection. METHODS AND RESULTS: From February to April 2020, we prospectively studied a cohort of 96 participants comprising 47 consecutive patients with CAD and acute SARS-CoV-2 infection (CAD + SARS-CoV-2), 19 CAD patients without infections, and 30 healthy controls. Clinical assessment included blood sampling, echocardiography, and electrocardiography within 12 h of admission. Respiratory failure was stratified by the Horovitz Index (HI) as moderately/severely impaired when HI ≤200 mmHg. The clinical endpoint (EP) was defined as HI ≤200 mmHg with subsequent mechanical ventilation within a follow-up of 30 days. The numbers of CD14dimCD16+ non-classical monocytes in peripheral blood were remarkably low in CAD + SARS-CoV-2 compared with CAD patients without infection and healthy controls (P < 0.0001). Moreover, these CD14dimCD16 monocytes showed decreased expression of established markers of adhesion, migration, and T-cell activation (CD54, CD62L, CX3CR1, CD80, and HLA-DR). Decreased numbers of CD14dimCD16+ monocytes were associated with the occurrence of EP. Kaplan-Meier curves illustrate that CAD + SARS-CoV-2 patients with numbers below the median of CD14dimCD16+ monocytes (median 1443 cells/mL) reached EP significantly more often compared to patients with numbers above the median (log-rank 5.03, P = 0.025). CONCLUSION: Decreased numbers of CD14dimCD16+ monocytes are associated with rapidly progressive respiratory failure in CAD + SARS-CoV-2 patients. Intensified risk assessments comprising monocyte sub- and phenotypes may help to identify patients at risk for respiratory failure.


Asunto(s)
COVID-19/complicaciones , Enfermedad de la Arteria Coronaria/complicaciones , Receptores de Lipopolisacáridos/análisis , Monocitos/fisiología , Receptores de IgG/análisis , SARS-CoV-2 , Anciano , Anciano de 80 o más Años , COVID-19/inmunología , Enfermedad de la Arteria Coronaria/inmunología , Femenino , Proteínas Ligadas a GPI/análisis , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Fenotipo , Estudios Retrospectivos
16.
Nanomedicine ; 29: 102274, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32712174

RESUMEN

Thrombus formation at athero-thrombotic sites is initiated by the exposure of collagen followed by platelet adhesion mediated by the platelet-specific collagen receptor glycoprotein VI (GPVI). Here, dimeric GPVI was used as a targeting motif to functionalize polymeric nanoparticle-based drug carriers and to show that with proper design, such GPVI-coated nanoparticles (GPNs) can efficiently and specifically target arterial injury sites while withstanding physiological flow. In a microfluidic model, under physiological shear levels (1-40 dyne/cm2), 200 nm and 2 µm GPNs exhibited a >60 and >10-fold increase in binding to collagen compared to control particles, respectively. In vitro experiments in an arterial stenosis injury model, subjected to physiological pulsatile flow, showed shear-enhanced adhesion of 200 nm GPNs at the stenosis region which was confirmed in vivo in a mice ligation carotid injury model using intravital microscopy. Altogether, our results illustrate how engineering tools can be harnessed to design nano-carriers that efficiently target cardiovascular disease sites.


Asunto(s)
Aterosclerosis/tratamiento farmacológico , Traumatismos de las Arterias Carótidas/tratamiento farmacológico , Nanopartículas/química , Glicoproteínas de Membrana Plaquetaria/farmacología , Animales , Aterosclerosis/patología , Plaquetas/efectos de los fármacos , Arterias Carótidas/efectos de los fármacos , Arterias Carótidas/patología , Traumatismos de las Arterias Carótidas/patología , Modelos Animales de Enfermedad , Humanos , Ratones , Activación Plaquetaria/efectos de los fármacos , Adhesividad Plaquetaria/efectos de los fármacos , Agregación Plaquetaria/efectos de los fármacos , Glicoproteínas de Membrana Plaquetaria/química
17.
Sci Rep ; 7(1): 2059, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28515448

RESUMEN

Vascular calcification resulting from hyperphosphatemia is a major determinant of mortality in chronic kidney disease (CKD). Vascular calcification is driven by aldosterone-sensitive osteogenic transformation of vascular smooth muscle cells (VSMCs). We show that even in absence of exogenous aldosterone, silencing and pharmacological inhibition (spironolactone, eplerenone) of the mineralocorticoid receptor (MR) ameliorated phosphate-induced osteo-/chondrogenic transformation of primary human aortic smooth muscle cells (HAoSMCs). High phosphate concentrations up-regulated aldosterone synthase (CYP11B2) expression in HAoSMCs. Silencing and deficiency of CYP11B2 in VSMCs ameliorated phosphate-induced osteogenic reprogramming and calcification. Phosphate treatment was followed by nuclear export of APEX1, a CYP11B2 transcriptional repressor. APEX1 silencing up-regulated CYP11B2 expression and stimulated osteo-/chondrogenic transformation. APEX1 overexpression blunted the phosphate-induced osteo-/chondrogenic transformation and calcification of HAoSMCs. Cyp11b2 expression was higher in aortic tissue of hyperphosphatemic klotho-hypomorphic (kl/kl) mice than in wild-type mice. In adrenalectomized kl/kl mice, spironolactone treatment still significantly ameliorated aortic osteoinductive reprogramming. Our findings suggest that VSMCs express aldosterone synthase, which is up-regulated by phosphate-induced disruption of APEX1-dependent gene suppression. Vascular CYP11B2 may contribute to stimulation of VSMCs osteo-/chondrogenic transformation during hyperphosphatemia.


Asunto(s)
Citocromo P-450 CYP11B2/genética , Citocromo P-450 CYP11B2/metabolismo , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Osteogénesis , Fosfatos/metabolismo , Adrenalectomía , Aldosterona/biosíntesis , Aorta/citología , Aorta/metabolismo , Vasos Coronarios/metabolismo , Regulación de la Expresión Génica , Humanos , Antagonistas de Receptores de Mineralocorticoides/farmacología , Músculo Liso Vascular/citología , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Receptores de Mineralocorticoides/metabolismo , Espironolactona/farmacología , Calcificación Vascular/metabolismo
18.
Biochem Biophys Res Commun ; 476(4): 267-272, 2016 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-27230958

RESUMEN

Angiotensin-II is a key factor in renal fibrosis. Obstructive nephropathy induces an isoform shift from catalytic Ampkα2 towards Ampkα1 which contributes to signaling involved in renal tissue injury. The present study explored whether the Ampkα1 isoform contributes to the renal effects of angiotensin-II. To this end, angiotensin-II was infused by subcutaneous implantation of osmotic minipumps in gene-targeted mice lacking functional Ampkα1 (Ampkα1(-/-)) and corresponding wild-type mice (Ampkα1(+/+)). Western blotting and qRT-PCR were employed to determine protein abundance and mRNA levels, respectively, in renal tissue. In Ampkα1(+/+) mice, angiotensin-II increased renal Ampkα1 protein expression without significantly modifying renal Ampkα2 protein expression. The renal phosphorylated Ampkα (Thr(172)) protein abundance was not affected by angiotensin-II in neither genotypes, but was significantly lower in Ampkα1(-/-) mice than Ampkα1(+/+) mice. Angiotensin-II increased the phosphorylation of Tak1 (Ser(412)) in renal tissue of Ampkα1(+/+) mice, an effect virtually absent in the Ampkα1(-/-) mice. Furthermore, angiotensin-II treatment significantly increased renal protein and mRNA expression of α-smooth muscle actin (αSma) as well as Tak1-target gene expression: Cox2, Il6 and Pai1 in Ampkα1(+/+) mice, all effects significantly less pronounced in Ampkα1(-/-) mice. In conclusion, angiotensin-II up-regulates the Ampkα1 isoform in renal tissue. Ampkα1 participates in renal Tak1 activation and Tak1-dependent signaling induced by angiotensin-II.


Asunto(s)
Proteínas Quinasas Activadas por AMP/genética , Angiotensina II/metabolismo , Regulación de la Expresión Génica , Riñón/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Actinas/genética , Animales , Ciclooxigenasa 2/genética , Activación Enzimática , Eliminación de Gen , Interleucina-6/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Ratones , Ratones Noqueados , Fosforilación , ARN Mensajero/genética
19.
J Mol Cell Cardiol ; 97: 36-43, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27106803

RESUMEN

AMP-activated protein kinase (Ampk) regulates myocardial energy metabolism and plays a crucial role in the response to cell stress. In the failing heart, an isoform shift of the predominant Ampkα2 to the Ampkα1 was observed. The present study explored possible isoform specific effects of Ampkα1 in cardiomyocytes. To this end, experiments were performed in HL-1 cardiomyocytes, as well as in Ampkα1-deficient and corresponding wild-type mice and mice following AAV9-mediated cardiac overexpression of constitutively active Ampkα1. As a result, in HL-1 cardiomyocytes, overexpression of constitutively active Ampkα1 increased the phosphorylation of Pkcζ. Constitutively active Ampkα1 further increased AP-1-dependent transcriptional activity and mRNA expression of the AP-1 target genes c-Fos, Il6 and Ncx1, effects blunted by Pkcζ silencing. In HL-1 cardiomyocytes, angiotensin-II activated AP-1, an effect blunted by silencing of Ampkα1 and Pkcζ, but not of Ampkα2. In wild-type mice, angiotensin-II infusion increased cardiac Ampkα1 and cardiac Pkcζ protein levels, as well as c-Fos, Il6 and Ncx1 mRNA expression, effects blunted in Ampkα1-deficient mice. Pressure overload by transverse aortic constriction (TAC) similarly increased cardiac Ampkα1 and Pkcζ abundance as well as c-Fos, Il6 and Ncx1 mRNA expression, effects again blunted in Ampkα1-deficient mice. AAV9-mediated cardiac overexpression of constitutively active Ampkα1 increased Pkcζ protein abundance and the mRNA expression of c-Fos, Il6 and Ncx1 in cardiac tissue. In conclusion, Ampkα1 promotes myocardial AP-1 activation in a Pkcζ-dependent manner and thus contributes to cardiac stress signaling.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Miocitos Cardíacos/metabolismo , Factor de Transcripción AP-1/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Animales , Dependovirus/genética , Expresión Génica , Vectores Genéticos/genética , Ratones , Ratones Noqueados , Isoformas de Proteínas , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Transducción de Señal , Transducción Genética
20.
Cardiovasc Res ; 110(3): 408-18, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-27001421

RESUMEN

AIMS: Reduced homoarginine plasma levels are associated with unfavourable cardiovascular outcome in chronic kidney disease (CKD). Cardiovascular events in CKD are fostered by vascular calcification, an active process promoted by hyperphosphatemia and involving osteo-/chondrogenic transformation of vascular smooth muscle cells (VSMCs). The present study explored the effect of homoarginine on phosphate-induced osteo-/chondrogenic signalling and vascular calcification. METHODS AND RESULTS: Experiments were performed in hyperphosphatemic klotho-hypomorphic mice (kl/kl), in subtotal nephrectomy and vitamin D3-overload mouse calcification models and in primary human aortic smooth muscle cells (HAoSMCs). As a result, plasma homoarginine levels were lower in kl/kl mice than in wild-type mice and in both genotypes significantly increased by lifelong treatment with homoarginine. Surprisingly, homoarginine treatment of kl/kl mice and of mice with renal failure after subtotal nephrectomy augmented vascular calcification and enhanced the transcript levels of plasminogen activator inhibitor 1 (Pai1) and of osteogenic markers Msx2, Cbfa1, and Alpl. Similarly, homoarginine treatment of HAoSMCs increased phosphate-induced calcium deposition, ALP activity, as well as PAI1, MSX2, CBFA1, and ALPL mRNA levels. Homoarginine alone up-regulated osteo-/chondrogenic signalling and indicators of oxidative stress in HAoSMCs. Furthermore, homoarginine reduced citrulline formation from arginine by nitric oxide (NO) synthase (NOS) isoforms. NO formation by NOS was reduced when using homoarginine as a substrate instead of arginine. The osteoinductive effects of homoarginine were mimicked by NOS inhibitor L-NAME and abolished by additional treatment with the NO donors DETA-NONOate and PAPA-NONOate or the antioxidants TEMPOL and TIRON. Furthermore, homoarginine augmented vascular calcification and aortic osteo-/chondrogenic signalling in mice after vitamin D3-overload, effects reversed by the NO donor molsidomine. CONCLUSION: Homoarginine augments osteo-/chondrogenic transformation of VSMCs and vascular calcification, effects involving impaired NO formation from homoarginine.


Asunto(s)
Transdiferenciación Celular/efectos de los fármacos , Condrogénesis/efectos de los fármacos , Homoarginina/toxicidad , Hiperfosfatemia/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Calcificación Vascular/inducido químicamente , Animales , Biomarcadores/sangre , Calcio/metabolismo , Células Cultivadas , Colecalciferol , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Regulación de la Expresión Génica/efectos de los fármacos , Predisposición Genética a la Enfermedad , Glucuronidasa/genética , Glucuronidasa/metabolismo , Homoarginina/sangre , Humanos , Hiperfosfatemia/genética , Hiperfosfatemia/patología , Proteínas Klotho , Ratones Noqueados , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/patología , Nefrectomía , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa/antagonistas & inhibidores , Óxido Nítrico Sintasa/metabolismo , Fenotipo , Insuficiencia Renal/genética , Insuficiencia Renal/metabolismo , Insuficiencia Renal/patología , Factores de Tiempo , Calcificación Vascular/sangre , Calcificación Vascular/genética , Calcificación Vascular/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...