Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Catal Sci Technol ; 13(23): 6733-6742, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38026730

RESUMEN

In recent years, considerable progress has been made in the conversion of biomass into renewable chemicals, yet the range of value-added products that can be formed from biomass remains relatively small. Herein, we demonstrate that molecules available from biomass serve as viable starting materials for the synthesis of phosphine ligands, which can be used in homogeneous catalysis. Specifically, we prepared renewable analogues of Beller's ligand (di(1-adamantyl)-n-butylphosphine, cataCXium® A), which is widely used in homogeneous catalysis. Our new renewable phosphine ligands facilitate Pd-catalysed Suzuki-Miyaura, Stille, and Buchwald-Hartwig coupling reactions with high yields, and our catalytic results can be rationalized based on the stereoelectronic properties of the ligands. The new phosphine ligands generate catalytic systems that can be applied for the late-stage functionalization of commercial drugs.

2.
J Am Chem Soc ; 145(30): 16305-16309, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37471267

RESUMEN

Ab initio molecular dynamics simulations are used to explore tetrahydrofuran (THF) solutions containing pure LiCl and LiCl with CH3MgCl, as model constituents of the turbo Grignard reagent. LiCl aggregates as Li4Cl4, which preferentially assumes compact cubane-like conformations. In particular, an open-edge pseudotetrahedral frame is promoted by solvent-assisted Li-Cl bond cleavage. Among the Grignard species involved in the Schlenk equilibrium, LiCl prefers to coordinate MgCl2 through µ2-Cl bridges. Using a 1:1 Li:Mg ratio, the plastic tetranuclear LiCl cluster decomposes to a highly solvated mixed LiCl·MgCl2 aggregate with prevalent Li-(µ2-Cl)2-Mg rings and linear LiCl entities. The MgCl2-assisted disaggregation of Li4Cl4 occurs through transient structures analogous to those detected for pure LiCl in THF, also corresponding to moieties observed in the solid state. This study identifies a synergistic role of LiCl for the determination of the compounds present in turbo Grignard solutions. LiCl shifts the Schlenk equilibrium promoting a higher concentration of dialkylmagnesium, while decomposing into smaller, more soluble, mixed Li:Mg:Cl clusters.

3.
ACS Catal ; 13(5): 3109-3119, 2023 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-36910875

RESUMEN

Selective reduction of CO2 is an efficient solution for producing nonfossil-based chemical feedstocks and simultaneously alleviating the increasing atmospheric concentration of this greenhouse gas. With this aim, molecular electrocatalysts are being extensively studied, although selectivity remains an issue. In this work, a combined experimental-computational study explores how the molecular structure of Mn-based complexes determines the dominant product in the reduction of CO2 to HCOOH, CO, and H2. In contrast to previous Mn(bpy-R)(CO)3Br catalysts containing alkyl amines in the vicinity of the Br ligand, here, we report that bpy-based macrocycles locking these amines at the side opposite to the Br ligand change the product selectivity from HCOOH to H2. Ab initio molecular dynamics simulations of the active species showed that free rotation of the Mn(CO)3 moiety allows for the approach of the protonated amine to the reactive center yielding a Mn-hydride intermediate, which is the key in the formation of H2 and HCOOH. Additional studies with DFT methods showed that the macrocyclic moiety hinders the insertion of CO2 to the metal hydride favoring the formation of H2 over HCOOH. Further, our results suggest that the minor CO product observed experimentally is formed when CO2 adds to Mn on the side opposite to the amine ligand before protonation. These results show how product selectivity can be modulated by ligand design in Mn-based catalysts, providing atomistic details that can be leveraged in the development of a fully selective system.

4.
Inorg Chem ; 62(12): 4835-4846, 2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-36920236

RESUMEN

The halogen bond (XB) is a highly directional class of noncovalent interactions widely explored by experimental and computational studies. However, the NMR signature of the XB has attracted limited attention. The prediction and analysis of the solid-state NMR (SSNMR) chemical shift tensor provide useful strategies to better understand XB interactions. In this work, we employ a computational protocol for modeling and analyzing the 19F SSNMR chemical shifts previously measured in a family of square-planar trans NiII-L2-iodoaryl-fluoride (L = PEt3) complexes capable of forming self-complementary networks held by a NiF···I(C) halogen bond [Thangavadivale, V.; Chem. Sci. 2018, 9, 3767-3781]. To understand how the 19F NMR resonances of the nickel-bonded fluoride are affected by the XB, we investigate the origin of the shielding in trans-[NiF(2,3,5,6-C6F4I)(PEt3)2], trans-[NiF(2,3,4,5-C6F4I)(PEt3)2], and trans-[NiF(C6F5)(PEt3)2] in the solid state, where a XB is present in the two former systems but not in the last. We perform the 19F NMR chemical shift calculations both in periodic and molecular models. The results show that the crystal packing has little influence on the NMR signatures of the XB, and the NMR can be modeled successfully with a pair of molecules interacting via the XB. Thus, the observed difference in chemical shift between solid-state and solution NMR can be essentially attributed to the XB interaction. The very high shielding of the fluoride and its driving contributor, the most shielded component of the chemical shift tensor, are well reproduced at the 2c-ZORA level. Analysis of the factors controlling the shielding shows how the highest occupied Ni/F orbitals shield the fluoride in the directions perpendicular to the Ni-F bond and specifically perpendicular to the coordination plane. This shielding arises from the magnetic coupling of the Ni(3d)/F(2p lone pair) orbitals with the vacant σNi-F* orbital, thereby rationalizing the very highly upfield (shielded) resonance of the component (δ33) along this direction. We show that these features are characteristic of square-planar nickel-fluoride complexes. The deshielding of the fluoride in the halogen-bonded systems is attributed to an increase in the energy gap between the occupied and vacant orbitals that are mostly responsible for the paramagnetic terms, notably along the most shielded direction.

5.
Inorg Chem ; 60(23): 17911-17925, 2021 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-34738800

RESUMEN

Platinum-based anticancer drugs are actively developed utilizing lipophilic ligands or drug carriers for the efficient penetration of biomembranes, reduction of side effects, and tumor targeting. We report the development of a supramolecular host-guest system built on cationic platinum(II) compounds bearing ligands anchored in the cavity of the macrocyclic host. The host-guest binding and hydrolysis process on the platinum core were investigated in detail by using NMR, MS, X-ray diffraction, and relativistic DFT calculations. The encapsulation process in cucurbit[7]uril unequivocally promotes the stability of hydrolyzed dicationic cis-[PtII(NH3)2(H2O)(NH2-R)]2+ compared to its trans isomer. Biological screening on the ovarian cancer lines A2780 and A2780/CP shows time-dependent toxicity. Notably, the reported complex and its ß-cyclodextrin (ß-CD) assembly achieve the same cellular uptake as cisplatin and cisplatin@ß-CD, respectively, while maintaining a significantly lower toxicity profile.


Asunto(s)
Antineoplásicos/farmacología , Teoría Funcional de la Densidad , Compuestos Macrocíclicos/farmacología , Compuestos Organoplatinos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/química , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Sustancias Macromoleculares/farmacología , Estructura Molecular , Compuestos Organoplatinos/síntesis química , Compuestos Organoplatinos/química , Células Tumorales Cultivadas
6.
Inorg Chem ; 59(23): 17509-17518, 2020 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-33226791

RESUMEN

1H NMR spectroscopy has become an important technique for the characterization of transition-metal hydride complexes, whose metal-bound hydrides are often difficult to locate by X-ray diffraction. In this regard, the accurate prediction of 1H NMR chemical shifts provides a useful, but challenging, strategy to help in the interpretation of the experimental spectra. In this work, we establish a density-functional-theory protocol that includes relativistic, solvent, and dynamic effects at a high level of theory, allowing us to report an accurate and reliable interpretation of 1H NMR hydride chemical shifts of iridium polyhydride complexes. In particular, we have studied in detail the hydride chemical shifts of the [Ir6(IMe)8(CO)2H14]2+ complex in order to validate previous assignments. The computed 1H NMR chemical shifts are strongly dependent on the relativistic treatment, the choice of the DFT exchange-correlation functional, and the conformational dynamics. By combining a fully relativistic four-component electronic-structure treatment with ab initio molecular dynamics, we were able to reliably model both the terminal and bridging hydride chemical shifts and to show that two NMR hydride signals were inversely assigned in the experiment.

7.
Chemistry ; 26(12): 2626-2634, 2020 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-31765503

RESUMEN

The incarceration of o-benzyne and 27 other guest molecules within hemicarcerand 1, as reported experimentally by Warmuth, and Cram and co-workers, has been studied by density functional theory (DFT). The 1 H NMR chemical shifts, rotational mobility, and conformational preference of the guests within the supramolecular cage were determined, which showed intriguing correlations of the chemical shifts with structural parameters of the host-guest system. Furthermore, based on the computed chemical shifts reassignments of some NMR signals are proposed. This affects, in particular, the putative characterization of the volatile benzyne molecule inside a hemicarcerand, for which our CCSD(T) and KT2 results indicate that the experimentally observed signals are most likely not resulting from an isolated o-benzyne within the supramolecular host. Instead, it is shown that the guest reacted with an aromatic ring of the host, and this adduct is responsible for the experimentally observed signals.

8.
Angew Chem Int Ed Engl ; 58(29): 9782-9786, 2019 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-31062910

RESUMEN

The transfer hydrogenation of N-heterocyclic carbene (NHC)-supported diborenes with dimethylamine borane proceeds with high selectivity for the trans-1,2-dihydrodiboranes. DFT calculations, supported by kinetic studies and deuteration experiments, suggest a stepwise proton-first-hydride-second reaction mechanism via an intermediate µ-hydrodiboronium dimethylaminoborate ion pair.

9.
Dalton Trans ; 48(23): 8076-8083, 2019 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-30916692

RESUMEN

We report a combined experimental-theoretical study on the 31P NMR chemical shift for a number of trans-platinum(ii) complexes. Validity and reliability of the 31P NMR chemical shift calculations are examined by comparing with the experimental data. A successful computational protocol for the accurate prediction of the 31P NMR chemical shifts was established for trans-[PtCl2(dma)PPh3] (dma = dimethylamine) complexes. The reliability of the computed values is shown to be critically dependent on the level of relativistic effects (two-component vs. four component), choice of density functionals, dynamical averaging, and solvation effects. Snapshots obtained from ab initio molecular dynamics simulations were used to identify those solvent molecules which show the largest interactions with the platinum complex, through inspection by using the non-covalent interaction program. We observe satisfactory accuracy from the full four-component matrix Dirac-Kohn-Sham method (mDKS) based on the Dirac-Coulomb Hamiltonian, in conjunction with the KT2 density functional, and dynamical averaging with explicit solvent molecules.

10.
Phys Chem Chem Phys ; 19(21): 13496-13502, 2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28492643

RESUMEN

In the present study, we have theoretically analyzed supramolecular complexes based on the Watson-Crick A-T and A-U base pairs using dispersion-corrected density functional theory (DFT). Hydrogen atoms H8 and/or H6 in the natural adenine and thymine/uracil bases were replaced, respectively, by substituents X8, Y6 = NH-, NH2, NH3+ (N series), O-, OH, OH2+ (O series), F, Cl or Br (halogen series). We examined the effect of the substituents on the hydrogen-bond lengths, strength and bonding mechanism, and the NMR shielding constants of the C2-adenine and C2-thymine/uracil atoms in the base pairs. The general belief in the literature that there is a direct connection between changes in the hydrogen-bond strength and the C2-adenine shielding constant is conclusively rejected by our computations.


Asunto(s)
Emparejamiento Base , ADN/química , ARN/química , Adenina/química , Enlace de Hidrógeno , Espectroscopía de Resonancia Magnética , Modelos Químicos , Estructura Molecular , Potasio/química , Timina/química , Uracilo/química
11.
Chemistry ; 20(16): 4583-90, 2014 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-24700524

RESUMEN

Inverse carbon-free sandwich structures with formula E2P4 (E=Al, Ga, In, Tl) have been proposed as a promising new target in main-group chemistry. Our computational exploration of their corresponding potential-energy surfaces at the S12h/TZ2P level shows that indeed stable carbon-free inverse-sandwiches can be obtained if one chooses an appropriate Group 13 element for E. The boron analogue B2P4 does not form the D(4h)-symmetric inverse-sandwich structure, but instead prefers a D(2d) structure of two perpendicular BP2 units with the formation of a double B-B bond. For the other elements of Group 13, Al-Tl, the most favorable isomer is the D(4h) inverse-sandwich structure. The preference for the D(2d) isomer for B2P4 and D(4h) for their heavier analogues has been rationalized in terms of an isomerization-energy decomposition analysis, and further corroborated by determination of aromaticity of these species.

12.
Phys Chem Chem Phys ; 14(43): 14905-10, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-22986618

RESUMEN

We report here a systematic study on the ability of molecular cages to bind (transition) metals. Starting from the superferrocenophane we investigate the incorporation of first-row transition metal (Sc-Zn) and alkaline-earth metal (Mg, Ca) double cations into these supermetallocenophane (super[5]phane) cages, and compare them with the corresponding metallocenes (Inorg. Chim. Acta, 2007, 360, 179). Moreover, we also investigate the binding of neutral and double-cationic metals inside supermetallocyclophane (super[6]phane) cages. The heterolytic and homolytic associations show preferences for different metals, and new metal-containing cages are proposed that should be viable candidates for synthesis.

13.
Phys Chem Chem Phys ; 14(43): 14764-8, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-22532176

RESUMEN

A series of clusters with the general formula CBe(5)E(-) (E = Al, Ga, In, Tl) are theoretically shown to have a planar pentacoordinate carbon atom. The structures show a simple and rigid topological framework-a planar EBe(4) ring surrounding a C center, with one of the ring Be-Be bonds capped in-plane by a fifth Be atom. The system is stabilized by a network of multicenter σ bonds in which the central C atom is the acceptor, and π systems as well by which the C atom donates charge to the Be and E atoms that encircle it.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...