Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Molecules ; 29(14)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-39064841

RESUMEN

Bone tissue engineering is a promising alternative to repair wounds caused by cellular or physical accidents that humans face daily. In this sense, the search for new graphene oxide (GO) nanofillers related to their degree of oxidation is born as an alternative bioactive component in forming new scaffolds. In the present study, three different GOs were synthesized with varying degrees of oxidation and studied chemically and tissue-wise. The oxidation degree was determined through infrared (FTIR), X-ray diffraction (XRD), X-ray photoelectron (XPS), and Raman spectroscopy (RS). The morphology of the samples was analyzed using scanning electron microscopy (SEM). The oxygen content was deeply described using the deconvolution of RS and XPS techniques. The latter represents the oxidation degree for each of the samples and the formation of new bonds promoted by the graphitization of the material. In the RS, two characteristic bands were observed according to the degree of oxidation and the degree of graphitization of the material represented in bands D and G with different relative intensities, suggesting that the samples have different crystallite sizes. This size was described using the Tuinstra-Koenig model, ranging between 18.7 and 25.1 nm. Finally, the bone neoformation observed in the cranial defects of critical size indicates that the F1 and F2 samples, besides being compatible and resorbable, acted as a bridge for bone healing through regeneration. This promoted healing by restoring bone and tissue structure without triggering a strong immune response.


Asunto(s)
Regeneración Ósea , Grafito , Ingeniería de Tejidos , Andamios del Tejido , Grafito/química , Regeneración Ósea/efectos de los fármacos , Ingeniería de Tejidos/métodos , Animales , Andamios del Tejido/química , Nanoestructuras/química , Huesos/efectos de los fármacos , Espectrometría Raman , Oxidación-Reducción , Difracción de Rayos X , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Ratas , Espectroscopía Infrarroja por Transformada de Fourier
2.
RSC Adv ; 14(19): 13565-13582, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38665501

RESUMEN

The constant demand for biocompatible and non-invasive materials for regenerative medicine in accidents and various diseases has driven the development of innovative biomaterials that promote biomedical applications. In this context, using sol-gel and ionotropic gelation methods, zinc oxide nanoparticles (NPs-ZnO) and chitosan nanoparticles (NPs-CS) were synthesized with sizes of 20.0 nm and 11.98 nm, respectively. These nanoparticles were incorporated into chitosan scaffolds through the freeze-drying method, generating a porous morphology with small (<100 µm), medium (100-200 µm), and large (200-450 µm) pore sizes. Moreover, the four formulations showed preliminary bioactivity after hydrolytic degradation, facilitating the formation of a hydroxyapatite (HA) layer on the scaffold surface, as evidenced by the presence of Ca (4%) and P (5.1%) during hydrolytic degradation. The scaffolds exhibited average antibacterial activity of F1 = 92.93%, F2 = 99.90%, F3 = 74.10%, and F4 = 88.72% against four bacterial strains: K. pneumoniae, E. cloacae, S. enterica, and S. aureus. In vivo, evaluation confirmed the biocompatibility of the functionalized scaffolds, where F2 showed accelerated resorption attributed to the NPs-ZnO. At the same time, F3 exhibited controlled degradation with NPs-CS acting as initiation points for degradation. On the other hand, F4 combined NPs-CS and NPs-ZnO, resulting in progressive degradation, reduced inflammation, and an organized extracellular matrix. All the results presented expand the boundaries in tissue engineering and regenerative medicine by highlighting the crucial role of nanoparticles in optimizing scaffold properties.

3.
Molecules ; 29(2)2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38257194

RESUMEN

Cancer stands as one of the deadliest diseases in human history, marked by an inferior prognosis. While traditional therapeutic methods like surgery, chemotherapy, and radiation have demonstrated success in inhibiting tumor cell growth, their side effects often limit overall benefits and patient acceptance. In this regard, three different graphene oxides (GO) with variations in their degrees of oxidation were studied chemically and tissue-wise. The accuracy of the synthesis of the different GO was verified by robust techniques using X-ray photoelectron spectroscopy (XPS), as well as conventional techniques such as infrared spectroscopy (FTIR), RAMAN spectroscopy, and X-ray diffraction (XRD). The presence of oxygenated groups was of great importance. It affected the physicochemical properties of each of the different graphene oxides demonstrated in the presence of new vibrational modes related to the formation of new bonds promoted by the graphitization of the materials. The toxicity analysis in the Hep-2 cell line of graphene oxide formulations at 250 µg/mL on the viability and proliferation of these tumor cells showed low activity. GO formulations did not show high antibacterial activity against Staphylococcus aureus and Escherichia coli strains. However, the different graphene oxides showed biocompatibility in the subdermal implantation model for 30, 60, and 90 days in the biomodels. This allowed healing by restoring hair and tissue architecture without triggering an aggressive immune response.


Asunto(s)
Grafito , Neoplasias del Cuello Uterino , Humanos , Femenino , Grafito/farmacología , Antibacterianos/farmacología , Escherichia coli , Óxidos/farmacología
4.
Pharmaceutics ; 15(9)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37765166

RESUMEN

The increasing demand for non-invasive biocompatible materials in biomedical applications, driven by accidents and diseases like cancer, has led to the development of sustainable biomaterials. Here, we report the synthesis of four block formulations using polycaprolactone (PCL), polylactic acid (PLA), and zinc oxide nanoparticles (ZnO-NPs) for subdermal tissue regeneration. Characterization by Fourier transform infrared spectroscopy (FT-IR) and X-ray diffraction (XRD) confirmed the composition of the composites. Additionally, the interaction of ZnO-NPs mainly occurred with the C=O groups of PCL occurring at 1724 cm-1, which disappears for F4, as evidenced in the FT-IR analysis. Likewise, this interaction evidenced the decrease in the crystallinity of the composites as they act as crosslinking points between the polymer backbones, inducing gaps between them and weakening the strength of the intermolecular bonds. Thermogravimetric (TGA) and differential scanning calorimetry (DSC) analyses confirmed that the ZnO-NPs bind to the carbonyl groups of the polymer, acting as weak points in the polymer backbone from where the different fragmentations occur. Scanning electron microscopy (SEM) showed that the increase in ZnO-NPs facilitated a more compact surface due to the excellent dispersion and homogeneous accumulation between the polymeric chains, facilitating this morphology. The in vivo studies using the nanocomposites demonstrated the degradation/resorption of the blocks in a ZnO-NP-dependant mode. After degradation, collagen fibers (Type I), blood vessels, and inflammatory cells continue the resorption of the implanted material. The results reported here demonstrate the relevance and potential impact of the ZnO-NP-based scaffolds in soft tissue regeneration.

5.
Polymers (Basel) ; 15(15)2023 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-37571109

RESUMEN

This research focused on developing new materials for endodontic treatments to restore tissues affected by infectious or inflammatory processes. Three materials were studied, namely tricalcium phosphate ß-hydroxyapatite (ß-TCP), commercial and natural hydroxyapatite (HA), and chitosan (CS), in different proportions. The chemical characterization using infrared spectroscopy (FTIR) and X-ray diffraction (XRD) analysis confirmed the composition of the composite. Scanning electron microscopy (SEM) demonstrated that the design and origin of the HA, whether natural or commercial, did not affect the morphology of the composites. In vitro studies using Artemia salina (A. salina) indicated that all three experimental materials were biocompatible after 24 h, with no significant differences in mortality rate observed among the groups. The subdermal implantation of the materials in block form exhibited biocompatibility and biodegradability after 30 and 60 days, with the larger particles undergoing fragmentation and connective tissue formation consisting of collagen type III fibers, blood vessels, and inflammatory cells. The implanted material continued to undergo resorption during this process. The results obtained in this research contribute to developing endodontic technologies for tissue recovery and regeneration.

6.
Polymers (Basel) ; 15(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38232016

RESUMEN

Tissue accidents provide numerous pathways for pathogens to invade and flourish, causing additional harm to the host tissue while impeding its natural healing and regeneration. Essential oils (EOs) exhibit rapid and effective antimicrobial properties without promoting bacterial resistance. Clove oils (CEO) demonstrate robust antimicrobial activity against different pathogens. Chitosan (CS) is a natural, partially deacetylated polyamine widely recognized for its vast antimicrobial capacity. In this study, we present the synthesis of four membrane formulations utilizing CS, polyvinyl alcohol (PVA), and glycerol (Gly) incorporated with CEO and nanobioglass (n-BGs) for applications in subdermal tissue regeneration. Our analysis of the membranes' thermal stability and chemical composition provided strong evidence for successfully blending polymers with the entrapment of the essential oil. The incorporation of the CEO in the composite was evidenced by the increase in the intensity of the band of C-O-C in the FTIR; furthermore, the increase in diffraction peaks, as well as the broadening, provide evidence that the introduction of CEO perturbed the crystal structure. The morphological examination conducted using scanning electron microscopy (SEM) revealed that the incorporation of CEO resulted in smooth surfaces, in contrast to the porous morphologies observed with the n-BGs. A histological examination of the implanted membranes demonstrated their biocompatibility and biodegradability, particularly after a 60-day implantation period. The degradation process of more extensive membranes involved connective tissue composed of type III collagen fibers, blood vessels, and inflammatory cells, which supported the reabsorption of the composite membranes, evidencing the material's biocompatibility.

7.
Polymers (Basel) ; 14(18)2022 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-36145994

RESUMEN

The use of biopolymers for tissue engineering has recently gained attention due to the need for safer and highly compatible materials. Starch is one of the most used biopolymers for membrane preparation. However, incorporating other polymers into starch membranes introduces improvements, such as better thermal and mechanical resistance and increased water affinity, as we reported in our previous work. There are few reports in the literature on the biocompatibility of starch/chicken gelatin composites. We assessed the in vivo biocompatibility of the five composites (T1-T5) cassava starch/gelatin membranes with subdermal implantations in biomodels at 30, 60, and 90 days. The FT-IR spectroscopy analysis demonstrated the main functional groups for starch and chicken gelatin. At the same time, the thermal study exhibited an increase in thermal resistance for T3 and T4, with a remaining mass (~15 wt.%) at 800 °C. The microstructure analysis for the T2-T4 demonstrated evident roughness changes with porosity presence due to starch and gelatin mixture. The decrease in the starch content in the composites also decreased the gelatinization heats for T3 and T4 (195.67, 196.40 J/g, respectively). Finally, the implantation results demonstrated that the formulations exhibited differences in the degradation and resorption capacities according to the starch content, which is easily degraded by amylases. However, the histological results showed that the samples demonstrated almost complete reabsorption without a severe immune response, indicating a high in vivo biocompatibility. These results show that the cassava starch/chicken gelatin composites are promising membrane materials for tissue engineering applications.

8.
Molecules ; 27(11)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35684575

RESUMEN

Scaffolds based on biopolymers and nanomaterials with appropriate mechanical properties and high biocompatibility are desirable in tissue engineering. Therefore, polylactic acid (PLA) nanocomposites were prepared with ceramic nanobioglass (PLA/n-BGs) at 5 and 10 wt.%. Bioglass nanoparticles (n-BGs) were prepared using a sol-gel methodology with a size of ca. 24.87 ± 6.26 nm. In addition, they showed the ability to inhibit bacteria such as Escherichia coli (ATCC 11775), Vibrio parahaemolyticus (ATCC 17802), Staphylococcus aureus subsp. aureus (ATCC 55804), and Bacillus cereus (ATCC 13061) at concentrations of 20 w/v%. The analysis of the nanocomposite microstructures exhibited a heterogeneous sponge-like morphology. The mechanical properties showed that the addition of 5 wt.% n-BG increased the elastic modulus of PLA by ca. 91.3% (from 1.49 ± 0.44 to 2.85 ± 0.99 MPa) and influenced the resorption capacity, as shown by histological analyses in biomodels. The incorporation of n-BGs decreased the PLA crystallinity (from 7.1% to 4.98%) and increased the glass transition temperature (Tg) from 53 °C to 63 °C. In addition, the n-BGs increased the thermal stability due to the nanoparticle's intercalation between the polymeric chains and the reduction in their movement. The histological implantation of the nanocomposites and the cell viability with HeLa cells higher than 80% demonstrated their biocompatibility character with a greater resorption capacity than PLA. These results show the potential of PLA/n-BGs nanocomposites for biomedical applications, especially for long healing processes such as bone tissue repair and avoiding microbial contamination.


Asunto(s)
Nanocompuestos , Poliésteres , Escherichia coli , Células HeLa , Humanos , Nanocompuestos/química , Poliésteres/química , Poliésteres/farmacología , Ingeniería de Tejidos
9.
Molecules ; 27(7)2022 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-35408663

RESUMEN

The indiscriminate use of plastic in food packaging contributes significantly to environmental pollution, promoting the search for more eco-friendly alternatives for the food industry. This work studied five formulations (T1-T5) of biodegradable cassava starch/gelatin films. The results showed the presence of the starch/gelatin functional groups by FT-IR spectroscopy. Differential scanning calorimetry (DSC) showed a thermal reinforcement after increasing the amount of gelatin in the formulations, which increased the crystallization temperature (Tc) from 190 °C for the starch-only film (T1) to 206 °C for the film with 50/50 starch/gelatin (T3). It also exhibited a homogeneous surface morphology, as evidenced by scanning electron microscopy (SEM). However, an excess of gelatin showed low compatibility with starch in the 25/75 starch/gelatin film (T4), evidenced by the low Tc definition and very rough and fractured surface morphology. Increasing gelatin ratio also significantly increased the strain (from 2.9 ± 0.5% for T1 to 285.1 ± 10.0% for T5) while decreasing the tensile strength (from 14.6 ± 0.5 MPa for T1 to 1.5 ± 0.3 MPa for T5). Water vapor permeability (WVP) increased, and water solubility (WS) also decreased with gelatin mass rising in the composites. On the other hand, opacity did not vary significantly due to the films' cassava starch and gelatin ratio. Finally, optimizing the mechanical and water barrier properties resulted in a mass ratio of 53/47 cassava starch/gelatin as the most appropriate for their application in food packaging, indicating their usefulness in the food-packaging industry.


Asunto(s)
Embalaje de Alimentos , Almidón , Animales , Pollos , Gelatina/química , Permeabilidad , Espectroscopía Infrarroja por Transformada de Fourier , Almidón/química , Resistencia a la Tracción
10.
Pharmaceutics ; 15(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36678672

RESUMEN

The search for new biocompatible materials that can replace invasive materials in biomedical applications has increased due to the great demand derived from accidents and diseases such as cancer in various tissues. In this sense, four formulations based on polycaprolactone (PCL) and polylactic acid (PLA) incorporated with zinc oxide nanoparticles (ZnO-NPs) and tea tree essential oil (TTEO) were prepared. The sol-gel method was used for zinc oxide nanoparticle synthesis with an average size of 11 ± 2 nm and spherical morphology. On the other hand, Fourier Transformed infrared spectroscopy (FTIR) showed characteristic functional groups for each composite component. The TTEO incorporation in the formulations was related to the increased intensity of the C-O-C band. The thermal properties of the materials show that the degradative properties of the ZnO-NPs decrease the thermal stability. The morphological study by scanning electron microscopy (SEM) showed that the presence of TTEO and ZnO-NPs act synergistically, obtaining smooth surfaces, whereas membranes with the presence of ZnO-NPs or TTEO only show porous morphologies. Histological implantation of the membranes showed biocompatibility and biodegradability after 60 days of implantation. This degradation occurs through the fragmentation of the larger particles with the presence of connective tissue constituted by type III collagen fibers, blood vessels, and inflammatory cells, where the process of resorption of the implanted material continues.

11.
Polymers (Basel) ; 15(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36616482

RESUMEN

The development of scaffolds for cell regeneration has increased because they must have adequate biocompatibility and mechanical properties to be applied in tissue engineering. In this sense, incorporating nanofillers or essential oils has allowed new architectures to promote cell proliferation and regeneration of new tissue. With this goal, we prepared four membranes based on polylactic acid (PLA), polycaprolactone (PCL), titanium dioxide nanoparticles (TiO2-NPs), and orange essential oil (OEO) by the drop-casting method. The preparation of TiO2-NPs followed the sol-gel process with spherical morphology and an average size of 13.39 nm ± 2.28 nm. The results show how the TiO2-NP properties predominate over the crystallization processes, reflected in the decreasing crystallinity percentage from 5.2% to 0.6% in the membranes. On the other hand, when OEO and TiO2-NPs are introduced into a membrane, they act synergistically due to the inclusion of highly conjugated thermostable molecules and the thermal properties of TiO2-NPs. Finally, incorporating OEO and TiO2-NPs promotes tissue regeneration due to the decrease in inflammatory infiltrate and the appearance of connective tissue. These results demonstrate the great potential for biomedical applications of the membranes prepared.

12.
Polymers (Basel) ; 13(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34771312

RESUMEN

Tissue engineering is crucial, since its early adoption focused on designing biocompatible materials that stimulate cell adhesion and proliferation. In this sense, scaffolds made of biocompatible and resistant materials became the researchers' focus on biomedical applications. Humans have used essential oils for a long time to take advantage of their antifungal, insecticide, antibacterial, and antioxidant properties. However, the literature demonstrating the use of essential oils for stimulating biocompatibility in new scaffold designs is scarce. For that reason, this work describes the synthesis of four different film composites of chitosan/polyvinyl alcohol/tea tree (Melaleuca alternifolia), essential oil (CS/PVA/TTEO), and the subdermal implantations after 90 days in Wistar rats. According to the Young modulus, DSC, TGA, mechanical studies, and thermal studies, there was a reinforcement effect with the addition of TTEO. Morphology and energy-dispersive (EDX) analysis after the immersion in simulated body fluid (SBF) exhibited a light layer of calcium chloride and sodium chloride generated on the material's surface, which is generally related to a bioactive material. Finally, the biocompatibility of the films was comparable with porcine collagen, showing better signs of resorption as the amount of TTEO was increased. These results indicate the potential application of the films in long-term biomedical needs.

13.
Molecules ; 26(16)2021 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-34443341

RESUMEN

In recent decades, the number of patients requiring biocompatible and resistant implants that differ from conventional alternatives dramatically increased. Among the most promising are the nanocomposites of biopolymers and nanomaterials, which pretend to combine the biocompatibility of biopolymers with the resistance of nanomaterials. However, few studies have focused on the in vivo study of the biocompatibility of these materials. The electrospinning process is a technique that produces continuous fibers through the action of an electric field imposed on a polymer solution. However, to date, there are no reports of chitosan (CS) and polyvinyl alcohol (PVA) electrospinning with carbon nano-onions (CNO) for in vivo implantations, which could generate a resistant and biocompatible material. In this work, we describe the synthesis by the electrospinning method of four different nanofibrous membranes of chitosan (CS)/(PVA)/oxidized carbon nano-onions (ox-CNO) and the subdermal implantations after 90 days in Wistar rats. The results of the morphology studies demonstrated that the electrospun nanofibers were continuous with narrow diameters (between 102.1 nm ± 12.9 nm and 147.8 nm ± 29.4 nm). The CS amount added was critical for the diameters used and the successful electrospinning procedure, while the ox-CNO amount did not affect the process. The crystallinity index was increased with the ox-CNO introduction (from 0.85% to 12.5%), demonstrating the reinforcing effect of the nanomaterial. Thermal degradation analysis also exhibited reinforcement effects according to the DSC and TGA analysis, with the higher ox-CNO content. The biocompatibility of the nanofibers was comparable with the porcine collagen, as evidenced by the subdermal implantations in biological models. In summary, all the nanofibers were reabsorbed without a severe immune response, indicating the usefulness of the electrospun nanocomposites in biomedical applications.


Asunto(s)
Carbono/química , Quitosano/química , Electricidad , Ensayo de Materiales , Membranas Artificiales , Nanocompuestos/química , Alcohol Polivinílico/química , Animales , Nanocompuestos/toxicidad , Oxidación-Reducción , Ratas
14.
Molecules ; 25(10)2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32423061

RESUMEN

Scaffold development for cell regeneration has increased in recent years due to the high demand for more efficient and biocompatible materials. Nanomaterials have become a critical alternative for mechanical, thermal, and antimicrobial property reinforcement in several biopolymers. In this work, four different chitosan (CS) bead formulations crosslinked with glutaraldehyde (GLA), including titanium dioxide nanoparticles (TiO2), and graphene oxide (GO) nanosheets, were prepared with potential biomedical applications in mind. The characterization of by FTIR spectroscopy, X-ray photoelectron spectroscopy (XRD), thermogravimetric analysis (TGA), energy-dispersive spectroscopy (EDS) and scanning electron microscopy (SEM), demonstrated an efficient preparation of nanocomposites, with nanoparticles well-dispersed in the polymer matrix. In vivo, subdermal implantation of the beads in Wistar rat's tissue for 90 days showed a proper and complete healing process without any allergenic response to any of the formulations. Masson's trichrome staining of the histological implanted tissues demonstrated the presence of a group of macrophage/histiocyte compatible cells, which indicates a high degree of biocompatibility of the beads. The materials were very stable under body conditions as the morphometry studies showed, but with low resorption percentages. These high stability beads could be used as biocompatible, resistant materials for long-term applications. The results presented in this study show the enormous potential of these chitosan nanocomposites in cell regeneration and biomedical applications.


Asunto(s)
Quitosano/química , Grafito/química , Nanocompuestos/química , Nanopartículas/química , Andamios del Tejido , Titanio/química , Animales , Materiales Biocompatibles , Supervivencia Celular/efectos de los fármacos , Quitosano/farmacología , Grafito/farmacología , Histiocitos/citología , Histiocitos/efectos de los fármacos , Histiocitos/fisiología , Masculino , Nanocompuestos/ultraestructura , Nanopartículas/ultraestructura , Ratas , Ratas Wistar , Piel/citología , Piel/efectos de los fármacos , Ingeniería de Tejidos/métodos , Titanio/farmacología
15.
Molecules ; 25(7)2020 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-32272702

RESUMEN

The development of new biocompatible materials for application in the replacement of deteriorated tissues (due to accidents and diseases) has gained a lot of attention due to the high demand around the world. Tissue engineering offers multiple options from biocompatible materials with easy resorption. Chitosan (CS) is a biopolymer derived from chitin, the second most abundant polysaccharide in nature, which has been highly used for cell regeneration applications. In this work, CS films and Ruta graveolens essential oil (RGEO) were incorporated to obtain porous and resorbable materials, which did not generate allergic reactions. An oil-free formulation (F1: CS) and three different formulations containing R. graveolens essential oil were prepared (F2: CS-RGEO 0.5%; F3: CS+RGEO 1.0%; and F4: CS+RGEO 1.5%) to evaluate the effect of the RGEO incorporation in the mechanical and thermal stability of the films. Infrared spectroscopy (FTIR) analyses demonstrated the presence of RGEO. In contrast, X-ray diffraction (XRD) and differential scanning calorimetry (DSC) analysis showed that the crystalline structure and percentage of CS were slightly affected by the RGEO incorporation. Interesting saturation phenomena were observed for mechanical and water permeability tests when RGEO was incorporated at higher than 0.5% (v/v). The results of subdermal implantation after 30 days in Wistar rats showed that increasing the amount of RGEO resulted in greater resorption of the material, but also more significant inflammation of the tissue surrounding the materials. On the other hand, the thermal analysis showed that the RGEO incorporation almost did not affect thermal degradation. However, mechanical properties demonstrated an understandable loss of tensile strength and Young's modulus for F3 and F4. However, given the volatility of the RGEO, it was possible to generate a slightly porous structure, as can be seen in the microstructure analysis of the surface and the cross-section of the films. The cytotoxicity analysis of the CS+RGEO compositions by the hemolysis technique agreed with in vivo results of the low toxicity observed. All these results demonstrate that films including crude essential oil have great application potential in the biomedical field.


Asunto(s)
Quitosano/química , Aceites Volátiles/química , Ruta/química , Adulto , Animales , Materiales Biocompatibles/química , Rastreo Diferencial de Calorimetría/métodos , Módulo de Elasticidad , Humanos , Masculino , Permeabilidad , Porosidad , Ratas , Ratas Wistar , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Resistencia a la Tracción , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Difracción de Rayos X/métodos , Adulto Joven
16.
Molecules ; 25(5)2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-32155970

RESUMEN

The design of scaffolding from biocompatible and resistant materials such as carbon nanomaterials and biopolymers has become very important, given the high rate of injured patients. Graphene and carbon nanotubes, for example, have been used to improve the physical, mechanical, and biological properties of different materials and devices. In this work, we report the grafting of carbon nano-onions with chitosan (CS-g-CNO) through an amide-type bond. These compounds were blended with chitosan and polyvinyl alcohol composites to produce films for subdermal implantation in Wistar rats. Films with physical mixture between chitosan, polyvinyl alcohol, and carbon nano-onions were also prepared for comparison purposes. Film characterization was performed with Fourier Transformation Infrared Spectroscopy (FTIR), Thermogravimetric Analysis (TGA), Differential Scanning Calorimetry (DSC), Tensile strength, X-ray Diffraction Spectroscopy (XRD), and Scanning Electron Microscopy (SEM). The degradation of films into simulated body fluid (SBF) showed losses between 14% and 16% of the initial weight after 25 days of treatment. Still, a faster degradation (weight loss and pH changes) was obtained with composites of CS-g-CNO due to a higher SBF interaction by hydrogen bonding. On the other hand, in vivo evaluation of nanocomposites during 30 days in Wistar rats, subdermal tissue demonstrated normal resorption of the materials with lower inflammation processes as compared with the physical blends of ox-CNO formulations. SBF hydrolytic results agreed with the in vivo degradation for all samples, demonstrating that with a higher ox-CNO content increased the stability of the material and decreased its degradation capacity; however, we observed greater reabsorption with the formulations including CS-g-CNO. With this research, we demonstrated the future impact of CS/PVA/CS-g-CNO nanocomposite films for biomedical applications.


Asunto(s)
Nanocompuestos/química , Prótesis e Implantes , Animales , Materiales Biocompatibles/química , Rastreo Diferencial de Calorimetría , Carbono , Quitosano/química , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Nanocompuestos/administración & dosificación , Nanocompuestos/uso terapéutico , Alcohol Polivinílico/química , Ratas Wistar , Espectroscopía Infrarroja por Transformada de Fourier , Espectrometría Raman , Resistencia a la Tracción , Termogravimetría , Difracción de Rayos X
17.
Biomolecules ; 9(11)2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31683889

RESUMEN

Recently, tissue engineering became a very important medical alternative in patients who need to regenerate damaged or lost tissues through the use of scaffolds that support cell adhesion and proliferation. Carbon nanomaterials (carbon nanotubes, fullerenes, multi-wall fullerenes, and graphene) became a very important alternative to reinforce the mechanical, thermal, and antimicrobial properties of several biopolymers. In this work, five different formulations of chitosan/poly(vinyl alcohol)/oxidized carbon nano-onions (CS/PVA/ox-CNO) were used to prepare biodegradable scaffolds with potential biomedical applications. Film characterization consisted of Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), tension strength, Young's modulus, X-ray diffraction spectroscopy (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS). The degradation in a simulated body fluid (FBS) demonstrated that all the formulations lost between 75% and 80% of their weight after 15 days of treatment, but the degradation decreased with the ox-CNO content. In vivo tests after 90 days of subdermal implantation of the nanocomposite films in Wistar rats' tissue demonstrated good biocompatibility without allergenic reactions or pus formation. There was a good correlation between FBS hydrolytic degradation and degradation in vivo for all the samples, since the ox-CNO content increased the stability of the material. All these results indicate the potential of the CS/PVA/ox-CNO nanocomposite films in tissue engineering, especially for long-term applications.


Asunto(s)
Quitosano/análogos & derivados , Quitosano/química , Nanocompuestos/química , Nanotubos de Carbono/química , Alcohol Polivinílico/química , Ingeniería de Tejidos/instrumentación , Andamios del Tejido/química , Animales , Materiales Biocompatibles/química , Rastreo Diferencial de Calorimetría , Ratas , Ratas Wistar , Espectroscopía Infrarroja por Transformada de Fourier
18.
Biomolecules ; 9(9)2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31443462

RESUMEN

Guava is a fruit appreciated worldwide for its high content of bioactive compounds. However, it is considered a highly perishable fruit, generally attacked by pathogenic species such as the fungi Colletotrichum gloeosporioides, which causes anthracnosis. To diminish the losses caused by pathogenic fungi, coatings of chitosan (CS) with Ruta graveolens essential oil (RGEO) in different concentrations (0.5, 1.0, 1.5% v/v) were applied in situ and their effects on the physical properties and microbiological quality of the guavas were studied. The CS+RGEO coated fruits exhibited better physicochemical behavior and lower microbiological decay as compared to the uncoated guavas, demonstrating the effectiveness of the coatings, especially those with 1.5% of RGEO content. All the fruits coated had greater acceptance and quality than the controls, being more those with essential oil incorporation. In situ investigation of C. gloesporioides infection of guavas demonstrated that the CS+RGEO coated guavas showed a high percentage of inhibition in the development of anthracnose lesions. In the present investigation, an alternative method has been proposed to extend the stability of the guavas fruit up to 12 days with application in the food industry.


Asunto(s)
Quitosano/química , Quitosano/farmacología , Colletotrichum/efectos de los fármacos , Almacenaje de Medicamentos , Psidium/química , Ruta/química , Temperatura , Antifúngicos/química , Antifúngicos/farmacología , Fenómenos Químicos , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Industria de Alimentos , Concentración de Iones de Hidrógeno , Fenómenos Mecánicos , Aceites Volátiles/química , Sensación , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA