Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Pharm ; 646: 123393, 2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37717717

RESUMEN

The present study aims to outline a rational framework for the design and development of a 1.0% (w/v) hydrocortisone nanocrystal-based formulation, resorting to a simple, efficient, and scalable nanonization methodology, based on the high-pressure homogenization (HPH) technique. Accordingly, the innovative product was comprehensively optimized following a Quality by Design (QbD) approach. The thorough selection of formulation composition was driven by a dual purpose: improving skin permeation and stability. In the early stage of development, a Failure Mode, Effects and Criticality Analysis (FMECA) diagram was employed to identify the most impactful variables for the critical quality attributes (CQAs). In this sense, a rotatable, three-factor and five-level circumscribed central composite design (CCCD) was applied to investigate how squalene concentration (x1), soluplus concentration (x2) and HPH-time (x3) influence physicochemical properties, performance and physical stability of the formulation. A robust Design Space (DS) was defined, establishing the optimal settings for the critical variables, whose combination meets the requirements set in the quality target product profile (QTPP). Morphological analysis revealed the cuboidal shape of hydrocortisone nanocrystals. In what concerns colloidal properties, the most promising formulation disclosed a small particle size (Dx(50) = 311.8 ± 1.5 nm), along with narrow size distribution (span value = 1.91 ± 0.17). Zeta potential results (-2.19 ± 0.15 mV--12.1 ± 0.4 mV) suggested a steric hindrance stabilization. FTIR spectra showed no chemical interactions between drug and formulation components. XRD diffractograms confirmed loss of crystallinity during the downsizing process. In vitro studies revealed an improvement on drug release rate (316 ± 21-516 ± 35 µg/cm2/√t), compared to the coarse suspension and commercial products, and a straight dependence on the stabilizer concentration and HPH time. The permeation flux across the skin (0.16 ± 0.02-1.2 ± 0.5 µg/cm2/h) appeared to be dependent on the drug physicochemical properties, in particular saturation solubility. Further characterization of the experimental formulations pointed out the role of the stabilizing component to prevent against physical instability phenomena. This organic solvent-free, and therefore "green" nanocrystal production technology offers great potential for pharmaceutical R&D and drug delivery by enabling the development of new forms of conventional drugs with optimal physicochemical properties and performance.

2.
Molecules ; 28(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37687071

RESUMEN

Coamorphous formation in binary systems of valsartan (Val) with 4,4'-bipyridine (Bipy) and trimethoprim (Tri) was investigated for mixtures with a mole fraction of 0.16~0.86 of valsartan and evaluated in terms of the glass transition temperature. The glass transition of the systems had a behavior outside the values predicted by the Gordon-Taylor equation, showing that Val-Bipy (hydrogen bonding between the components) had a lower deviation and Val-Tri (ionic bonding between the components) had a higher deviation. Mixtures of compositions 2:1 Val-Bipy and 1:1 Val-Tri were selected for further investigation and verified to be stable, as no crystallization was observed during subsequent heating and cooling programs. For these systems, the effective activation energy during glass transition was evaluated. Compared to pure valsartan, the system with the lower glass transition temperature (Val-Bipy) presented the highest effective activation energy, and the system with the higher glass transition temperature (Val-Tri) presented a lower effective activation energy. The results presented a good correlation between the data obtained from two different techniques to determine the fragility and effective activation energy: non-isothermal kinetic analysis by DSC and TSDC.

3.
J Pharm Sci ; 112(8): 2230-2239, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36921800

RESUMEN

Cocrystals are recognized as one of the most efficient approaches to improve aqueous solubility of Biopharmaceutical Classification System, BCS, classes II and IV drugs. Cocrystal discovery and the establishment of experimental conditions suitable for scale-up purposes are some of the main challenges in cocrystal investigation. In this work, the investigation of mechanochemical synthesis of norfloxacin cocrystals with picolinic and isonicotinic acids is performed, leading to the discovery of two new cocrystals of this important BCS class IV antibiotic, which were characterized through thermal, spectral and diffractometric analysis. Norfloxacin apparent aqueous solubility using the cocrystals is also presented, with higher values being obtained for all the investigated systems when compared to the pure drug. Norfloxacin has 3 polymorphs and several solvents/hydrates, which represents a challenge for obtaining pure cocrystal forms from solvent crystallization. This challenge was successfully overcome in this work, as experimental conditions to obtain the pure cocrystals (the new ones and also norfloxacin-nicotinic acid and norfloxacin-saccharin) were established using Crystal16 equipment. This is a crucial step to envisage future scale-up procedures and therefore a valuable information for the pharmaceutical industry.


Asunto(s)
Norfloxacino , Agua , Solubilidad , Solventes/química , Agua/química , Cristalización/métodos
4.
Materials (Basel) ; 17(1)2023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38203929

RESUMEN

Water pollution poses a global threat to ecosystems and human health and is driven by the presence of various contaminants in wastewater, including nano- and microplastics. Despite the magnitude of this problem, the majority of global wastewater is released untreated into water bodies. To combat this issue, a multi-strategy approach is needed. This study explores a circular economy-based solution for treating emerging pollutants, particularly wastewater from ophthalmic spectacle lens production. Our approach integrates solid waste materials into polymeric and cement matrices while also utilising wastewater for microalgae cultivation. This innovative strategy focuses on biomass generation and economic valorisation. By adopting a circular economy model, we aim to transform environmental pollutants from wastewater into valuable organic products. A key component of our approach is the utilisation of microalgae, specifically Nannochloropsis sp., known for its high lipid content and resilience. This microalgae species serves as a promising biobased feedstock, supporting the production of innovative biobased products, such as biopolymers, for ophthalmic lens manufacturing. Our interdisciplinary approach combines microalgae technology, analytical chemistry, cement production, and polymer processing to develop a sustainable circular economy model that not only addresses environmental concerns, but also offers economic benefits. This study underscores the potential of harnessing high-value products from waste streams and underscores the importance of circular economy principles in tackling pollution and resource challenges.

5.
Molecules ; 26(21)2021 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-34771128

RESUMEN

In this work, co-crystal screening was carried out for two important dihydrofolate reductase (DHFR) inhibitors, trimethoprim (TMP) and pyrimethamine (PMA), and for 2,4-diaminopyrimidine (DAP), which is the pharmacophore of these active pharmaceutical ingredients (API). The isomeric pyridinecarboxamides and two xanthines, theophylline (THEO) and caffeine (CAF), were used as co-formers in the same experimental conditions, in order to evaluate the potential for the pharmacophore to be used as a guide in the screening process. In silico co-crystal screening was carried out using BIOVIA COSMOquick and experimental screening was performed by mechanochemistry and supported by (solid + liquid) binary phase diagrams, infrared spectroscopy (FTIR) and X-ray powder diffraction (XRPD). The in silico prediction of low propensities for DAP, TMP and PMA to co-crystallize with pyridinecarboxamides was confirmed: a successful outcome was only observed for DAP + nicotinamide. Successful synthesis of multicomponent solid forms was achieved for all three target molecules with theophylline, with DAP co-crystals revealing a greater variety of stoichiometries. The crystalline structures of a (1:2) TMP:THEO co-crystal and of a (1:2:1) DAP:THEO:ethyl acetate solvate were solved. This work demonstrated the possible use of the pharmacophore of DHFR inhibitors as a guide for co-crystal screening, recognizing some similar trends in the outcome of association in the solid state and in the molecular aggregation in the co-crystals, characterized by the same supramolecular synthons.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Pirimetamina/farmacología , Pirimidinas/farmacología , Tetrahidrofolato Deshidrogenasa/metabolismo , Trimetoprim/farmacología , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos , Inhibidores Enzimáticos/química , Humanos , Modelos Moleculares , Estructura Molecular , Pirimetamina/química , Pirimidinas/química , Trimetoprim/química
6.
J Pharm Biomed Anal ; 169: 235-244, 2019 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-30877935

RESUMEN

This paper, reports for the first time the green synthesis of the polymorphs I and II of new pharmaceutical co-crystals lamivudine:theophylline in solid-phase, through the mixture between lamivudine and theophylline (both active pharmaceutical ingredients-APIs) in the proportion of 1:1 by neat grinding and liquid assisted grinding (10 µL ethanol). Fourier transform-infrared (FT-IR) spectroscopy and multivariate curve resolution with alternating least-squares (MCR-ALS) were employed as non-invasive analytical methodology for the at-line green synthesis monitoring of the novels lamivudine:theophylline co-crystals. By MCR-ALS it was possible to identify each component present in a complex matrix, with strong spectral overlapping, containing lamivudine, theophylline, and the novel lamivudine:theophylline co-crystal with high confidence based on the comparison of the pure and recovered spectral and concentration profiles. This model allowed to identify the end of the reaction and understand the mechanism involved in the synthesis through the identification of the intermediates present in the synthesis process. Also, MCR-ALS model estimated the concentration of co-crystal polymorph I with a root mean square error of prediction (RMSEP) and the percentage relative error of prediction (REP%) equal to 3.323 (w/w) and 9.9%, respectively. These were good results since the spectral profile of cocrystal and the physical mixture of its APIs present strong spectral overlapping in their spectral domain. Therefore, the quantification of the co-crystal between its APIs (lamivudine and theophylline) certified that the co-crystal as final product was obtained, collaborating with the results obtained by differential scanning calorimetry (DSC) and X-ray powder diffraction (XRPD).


Asunto(s)
Lamivudine/química , Teofilina/química , Rastreo Diferencial de Calorimetría/métodos , Cristalización/métodos , Análisis de los Mínimos Cuadrados , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X/métodos
7.
Eur J Pharm Sci ; 129: 148-162, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30639400

RESUMEN

In this work, a crystal engineering and thermodynamic based approach has been used aiming at contributing to a deeper knowledge of lamotrigine multicomponent solid forms. Two types of co-molecules have been chosen that can give rise to co-crystals with lamotrigine through different supramolecular heterosynthons: the xanthines, theophylline and caffeine, and the three isomeric pyridinecarboxamides. Association with diflunisal, which may result in a salt, was also investigated. Mechanochemistry, differential scanning calorimetry, thermogravimetry, X-ray powder and single crystal diffraction, infrared spectroscopy were the methods used. For all the systems, exploratory neat mechanochemistry experiments, carried out on lamotrigine + co-molecule binary mixtures of different compositions, were not successful in promoting association. From differential scanning calorimetry data and the binary solid-liquid phase diagrams, co-crystals/salts were identified as well as their respective stoichiometry, and a methodology of synthesis was established. For pyridinecarboxamides, molecular recognition is dependent on the position of the amide group in the pyridine ring: co-crystallization did not occur with picolinamide co-former. Both xanthines form co-crystals with lamotrigine, (1:1) with theophylline and (2:1) lamotrigine:caffeine. Additionally, the crystalline structure of a lamotrigine:theophylline 1:1 monohydrate was solved. The (1:1) lamotrigine:theophylline co-crystal converts to this monohydrate in accelerated stability tests. A (1:1) lamotrigine:diflunisal salt was identified, which proved to be stable in accelerated stability assays.


Asunto(s)
Lamotrigina/química , Cafeína/química , Rastreo Diferencial de Calorimetría/métodos , Cristalización/métodos , Cristalografía por Rayos X/métodos , Difracción de Polvo/métodos , Solubilidad/efectos de los fármacos , Espectrofotometría Infrarroja/métodos , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Teofilina/química , Termodinámica , Difracción de Rayos X/métodos
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 188: 183-188, 2018 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-28710993

RESUMEN

Fluorescent materials are important for low-cost opto-electronic and biomedical sensor devices. In this study we present the synthesis and characterization of graphene modified with bis-thiosemicarbazone (BTS). This new material was characterized using Fourier transform infrared spectroscopy (FT-IR), Ultraviolet-visible (UV-Vis) and Raman spectroscopy techniques. Further evaluation by X-ray diffraction (XRD), thermo-gravimetric analysis (TGA), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and atomic-force microscopy (AFM) allowed us to fully characterize the morphology of the fabricated material. The average height of the BTSGO sheet is around 10nm. Optical properties of BTSGO evaluated by photoluminescence (PL) spectroscopy showed red shift at different excitation wavelength compared to graphene oxide or bisthiosemicarbazide alone. These results strongly suggest that BTSGO material could find potential applications in graphene based optoelectronic devices.

9.
Int J Pharm ; 533(1): 1-13, 2017 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-28893584

RESUMEN

A study has been carried out of binary solid systems made up of the antiepileptic drug levetiracetam, LEV, and a nonsteroidal anti-inflammatory drug, NSAID, capable of managing the inflammation that accompanies epileptic activity. One aim of this research was to identify eutectic mixtures and co-crystals, which are able to impact positively on their biopharmaceutical properties. The NSAIDs studied are (S)- and (R,S)-ibuprofen, (S)- and (R,S)-naproxen, (R,S)-ketoprofen and (R,S)-flurbiprofen, all class II in the Biopharmaceutical Classification System. A green mechanochemical methodology has been used to prepare binary mixtures with different molar ratios, and the binary solid-liquid phase diagrams established. For LEV+(S)-ibuprofen, formation of a single (1:1) co-crystal was confirmed; this was found to melt incongruently. The co-crystal was found to be stable in accelerated stability tests. For the other systems, interesting eutectic mixtures were identified, which showed enhanced dissolution rates of the NSAID relative to the pure drug. For LEV+(R,S)-ibuprofen, LEV+(S)-naproxen and LEV+(R,S)-naproxen, the eutectic mixture compositions have the effective doses of both components. All the NSAIDs investigated are chiral, and their racemates are racemic compounds. Levetiracetam, the (S)-enantiomer of etiracetam, was not efficient in enantiomer discrimination, as all the racemic compound structures are present as the prepared solid mixtures.


Asunto(s)
Antiinflamatorios no Esteroideos/química , Anticonvulsivantes/química , Piracetam/análogos & derivados , Combinación de Medicamentos , Liberación de Fármacos , Flurbiprofeno/química , Ibuprofeno/química , Cetoprofeno/química , Levetiracetam , Naproxeno/química , Piracetam/química , Estereoisomerismo
10.
Int J Pharm ; 466(1-2): 68-75, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24607201

RESUMEN

A thermodynamic based approach is used to investigate diflunisal+nicotinamide binary and solution mixtures. A 2:1 co-crystal could be prepared by liquid assisted ball mill grinding and by solution crystallization from ethanol. The diflunisal+nicotinamide+ethanol ternary phase diagram points out conditions for co-crystal scaling-up. From the diflunisal+nicotinamide binary phase diagram, besides identification of the co-crystal stoichiometry, two additional useful binary compositions, eutectic mixtures, were characterized. From a solution enthalpy based approach, the enthalpic stabilization of the co-crystal relative to the pure solid components is quantified. Intrinsic dissolution rate, IDR, in test conditions consistent with USP requirements, including those referred in the diflunisal tablet monograph, were carried out, indicating that the co-crystal improves diflunisal IDR by about 20%. The systematic study of diflunisal+nicotinamide mixtures presented in this work is of particular interest due to the relevance of diflunisal, both as a non-steroidal anti-inflammatory drug and also due to the potentiality of orally administrated diflunisal in familial amyloid polyneuropathy.


Asunto(s)
Diflunisal/química , Niacinamida/química , Rastreo Diferencial de Calorimetría , Cristalización , Etanol/química , Difracción de Polvo , Solubilidad , Espectrofotometría Infrarroja , Termodinámica , Difracción de Rayos X
11.
J Phys Chem B ; 115(19): 5794-800, 2011 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-21520954

RESUMEN

The well-structured ß-phase emission of the neutral poly(9,9-dioctylfluorene) (PFO) is observed in 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers, either as polydisperse aqueous liposomes or as the lamellar phase in thin films, and has been characterized by absorption, fluorescence (steady-state and time-resolved), and fluorescence anisotropy spectroscopy. Inclusion of PFO in DMPC liposomes provides a way of obtaining the ordered structure of this neutral polymer in aqueous suspensions. Quantification of the increase of the PFO ß-phase in DMPC liposomes with the increase in polymer concentration is followed by deconvolution of the absorption spectra. In solid films, the presence of the phospholipids enhances the ß-phase formation. In addition, the effect of the PFO concentration on the phospholipid phase transitions has been studied by differential scanning calorimetry (in liposome) and polarized light thermal microscopy (in solid film), confirming PFO/DMPC interactions in both liposome and films. The liposome size and structure in the presence and absence of polymer were characterized by dynamic light scattering and transmission electron microscopy, which showed relatively modest changes in liposome shape but a decrease in size upon incorporation of PFO.


Asunto(s)
Fluorenos/química , Membrana Dobles de Lípidos/química , Liposomas/química , Rastreo Diferencial de Calorimetría , Dimiristoilfosfatidilcolina/química , Transición de Fase , Espectrometría de Fluorescencia
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 76(3-4): 395-400, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20418154

RESUMEN

Betaxolol is a selective beta(1) receptor blocker used in the treatment of hypertension and glaucoma. A study of the betaxolol structure based on infrared spectroscopy and natural bond orbital (NBO) theory is the main aim of the present research. FTIR spectra of the solid betaxolol were recorded in the region from 4000 to 400cm(-1), in the temperature range between 25 and -170 degrees C. For spectral interpretation, spectrum of the deuterated betaxolol and the theoretical vibrational spectra of the conformer present in the solid obtained at the B3LYP/6-31G* level of theory, were used. Further insight into the structure was provided by natural bond orbital theory. NBO analysis of the conformer, before and after optimization, was carried out at the same level of theory referred above. Vibrational modes involved in hydrogen bond in the stretching and bending region were used in the estimation of the enthalpy using empirical correlations between enthalpy and the frequency shift that occurs as a result of the establishment of intermolecular hydrogen bonds. A detailed study of the structure of betaxolol and of its intermolecular interactions was obtained from the combination spectroscopy and NBO theory.


Asunto(s)
Antagonistas Adrenérgicos beta/química , Betaxolol/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Estructura Molecular
13.
Artículo en Inglés | MEDLINE | ID: mdl-19129004

RESUMEN

Beta-adrenoceptor-blocking agents (beta-blockers) are on the list of the top selling drugs. Pindolol is a representative of this type of compound, either from the structural point of view, or as reference for comparison of the pharmacokinetic properties of the beta-blockers. A study of the pindolol structure based on infrared spectroscopy and natural bond orbital (NBO) theory is the main aim of the present research. FTIR spectra of the solid pindolol were recorded from 4000 to 400cm(-1), at temperatures between 25 and -170 degrees C. For spectral interpretation, the theoretical vibrational spectra of the conformer present in the solid was obtained at the B3LYP/6-31G* level of theory. NBO analysis of the reference conformer, before and after optimization, was carried out at the same level of theory referred above. Characteristic absorption vibrational bands of the spectra of solid pindolol and of the isolated conformer were identified. Intra- and intermolecular interactions in pindolol were confirmed by the frequency shift of the vibrational modes and by the NBO theory. A detailed molecular picture of pindolol and of its intermolecular interactions was obtained from spectroscopy and NBO theory. The combination of both methods gives a deeper insight into the structure.


Asunto(s)
Antagonistas Adrenérgicos beta/química , Modelos Químicos , Pindolol/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Estructura Molecular , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...