Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Front Immunol ; 13: 849701, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35911772

RESUMEN

Breast tumors and their derived circulating cancer cells express the leukocyte ß2 integrin ligand Intercellular adhesion molecule 1 (ICAM-1). We found that elevated ICAM-1 expression in breast cancer cells results in a favorable outcome and prolonged survival of breast cancer patients. We therefore assessed the direct in vivo contribution of ICAM-1 expressed by breast cancer cells to breast tumorigenesis and lung metastasis in syngeneic immunocompetent mice hosts using spontaneous and experimental models of the lung metastasis of the C57BL/6-derived E0771 cell line, a luminal B breast cancer subtype. Notably, the presence of ICAM-1 on E0771 did not alter tumor growth or the leukocyte composition in the tumor microenvironment. Interestingly, the elimination of Tregs led to the rapid killing of primary tumor cells independently of tumor ICAM-1 expression. The in vivo elimination of a primary E0771 tumor expressing the ovalbumin (OVA) model neoantigen by the OVA-specific OVA-tcr-I mice (OT-I) transgenic cytotoxic T lymphocytes (CTLs) also took place normally in the absence of ICAM-1 expression by E0771 breast cancer target cells. The whole lung imaging of these cells by light sheet microscopy (LSM) revealed that both Wild type (WT)- and ICAM-1-deficient E0771 cells were equally disseminated from resected tumors and accumulated inside the lung vasculature at similar magnitudes. ICAM-1-deficient breast cancer cells developed, however, much larger metastatic lesions than their control counterparts. Strikingly, the vast majority of these cells gave rise to intravascular tumor colonies both in spontaneous and experimental metastasis models. In the latter model, ICAM-1 expressing E0771- but not their ICAM-1-deficient counterparts were highly susceptible to elimination by neutrophils adoptively transferred from E0771 tumor-bearing donor mice. Ex vivo, neutrophils derived from tumor-bearing mice also killed cultured E0771 cells via ICAM-1-dependent interactions. Collectively, our results are a first indication that ICAM-1 expressed by metastatic breast cancer cells that expand inside the lung vasculature is involved in innate rather than in adaptive cancer cell killing. This is also a first indication that the breast tumor expression of ICAM-1 is not required for CTL-mediated killing but can function as a suppressor of intravascular breast cancer metastasis to lungs.


Asunto(s)
Neoplasias Pulmonares , Linfocitos T Citotóxicos , Animales , Línea Celular Tumoral , Molécula 1 de Adhesión Intercelular/metabolismo , Neoplasias Pulmonares/patología , Ratones , Ratones Endogámicos C57BL , Ovalbúmina , Microambiente Tumoral
2.
Sci Adv ; 8(28): eabk3511, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35857489

RESUMEN

Climate change is gradual, but it can also cause brief extreme heat waves that can exceed the upper thermal limit of any one organism. To study the evolutionary potential of upper thermal tolerance, we evolved the cold-adapted Antarctic bacterium Pseudoalteromonas haloplanktis to survive at 30°C, beyond its ancestral thermal limit. This high-temperature adaptation occurred rapidly and in multiple populations. It involved genomic changes that occurred in a highly parallel fashion and mitigated the effects of protein misfolding. However, it also confronted a physiological limit, because populations failed to grow beyond 30°C. Our experiments aimed to facilitate evolutionary rescue by using a small organism with large populations living at temperatures several degrees below their upper thermal limit. Larger organisms with smaller populations and living at temperatures closer to their upper thermal tolerances are even more likely to go extinct during extreme heat waves.

3.
Nature ; 607(7917): 156-162, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35732738

RESUMEN

The metastatic spread of cancer is achieved by the haematogenous dissemination of circulating tumour cells (CTCs). Generally, however, the temporal dynamics that dictate the generation of metastasis-competent CTCs are largely uncharacterized, and it is often assumed that CTCs are constantly shed from growing tumours or are shed as a consequence of mechanical insults1. Here we observe a striking and unexpected pattern of CTC generation dynamics in both patients with breast cancer and mouse models, highlighting that most spontaneous CTC intravasation events occur during sleep. Further, we demonstrate that rest-phase CTCs are highly prone to metastasize, whereas CTCs generated during the active phase are devoid of metastatic ability. Mechanistically, single-cell RNA sequencing analysis of CTCs reveals a marked upregulation of mitotic genes exclusively during the rest phase in both patients and mouse models, enabling metastasis proficiency. Systemically, we find that key circadian rhythm hormones such as melatonin, testosterone and glucocorticoids dictate CTC generation dynamics, and as a consequence, that insulin directly promotes tumour cell proliferation in vivo, yet in a time-dependent manner. Thus, the spontaneous generation of CTCs with a high proclivity to metastasize does not occur continuously, but it is concentrated within the rest phase of the affected individual, providing a new rationale for time-controlled interrogation and treatment of metastasis-prone cancers.


Asunto(s)
Neoplasias de la Mama , Metástasis de la Neoplasia , Sueño , Animales , Neoplasias de la Mama/patología , Recuento de Células , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Glucocorticoides , Humanos , Insulina , Melatonina , Ratones , Metástasis de la Neoplasia/patología , Células Neoplásicas Circulantes/patología , RNA-Seq , Análisis de la Célula Individual , Testosterona , Factores de Tiempo
4.
Cancer Res ; 82(4): 681-694, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34916221

RESUMEN

Blood-borne metastasis of breast cancer involves a series of tightly regulated sequential steps, including the growth of a primary tumor lesion, intravasation of circulating tumor cells (CTC), and adaptation in various distant metastatic sites. The genes orchestrating each of these steps are poorly understood in physiologically relevant contexts, owing to the rarity of experimental models that faithfully recapitulate the biology, growth kinetics, and tropism of human breast cancer. Here, we conducted an in vivo loss-of-function CRISPR screen in newly derived CTC xenografts, unique in their ability to spontaneously mirror the human disease, and identified specific genetic dependencies for each step of the metastatic process. Validation experiments revealed sensitivities to inhibitors that are already available, such as PLK1 inhibitors, to prevent CTC intravasation. Together, these findings present a new tool to reclassify driver genes involved in the spread of human cancer, providing insights into the biology of metastasis and paving the way to test targeted treatment approaches. SIGNIFICANCE: A loss-of-function CRISPR screen in human CTC-derived xenografts identifies genes critical for individual steps of the metastatic cascade, suggesting novel drivers and treatment opportunities for metastatic breast cancers.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias de la Mama/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Células Neoplásicas Circulantes/metabolismo , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/sangre , Neoplasias de la Mama/patología , Sistemas CRISPR-Cas , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Metástasis de la Neoplasia , Células Neoplásicas Circulantes/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , ARN Guía de Kinetoplastida/genética , ARN Guía de Kinetoplastida/metabolismo , RNA-Seq/métodos , Análisis de Supervivencia , Ensayos Antitumor por Modelo de Xenoinjerto/métodos , Quinasa Tipo Polo 1
5.
Br J Cancer ; 125(1): 23-27, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33762721

RESUMEN

Circulating tumour cell (CTC) clusters have been proposed to be major players in the metastatic spread of breast cancer, particularly during advanced disease stages. Yet, it is unclear whether or not they manifest in early breast cancer, as their occurrence in patients with metastasis-free primary disease has not been thoroughly evaluated. In this study, exploiting nanostructured titanium oxide-coated slides for shear-free CTC identification, we detect clustered CTCs in the curative setting of multiple patients with early breast cancer prior to surgical treatment, highlighting their presence already at early disease stages. These results spotlight an important aspect of metastasis biology and the possibility to intervene with anti-cluster therapeutics already during the early manifestation of breast cancer.


Asunto(s)
Neoplasias de la Mama/patología , Células Neoplásicas Circulantes/patología , Titanio/química , Neoplasias de la Mama/cirugía , Estudios de Casos y Controles , Línea Celular Tumoral , Femenino , Humanos , Nanoestructuras , Metástasis de la Neoplasia , Estadificación de Neoplasias
6.
Cell Rep ; 32(10): 108105, 2020 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-32905777

RESUMEN

Circulating tumor cells (CTCs) are shed from solid cancers in the form of single or clustered cells, and the latter display an extraordinary ability to initiate metastasis. Yet, the biological phenomena that trigger the shedding of CTC clusters from a primary cancerous lesion are poorly understood. Here, when dynamically labeling breast cancer cells along cancer progression, we observe that the majority of CTC clusters are undergoing hypoxia, while single CTCs are largely normoxic. Strikingly, we find that vascular endothelial growth factor (VEGF) targeting leads to primary tumor shrinkage, but it increases intra-tumor hypoxia, resulting in a higher CTC cluster shedding rate and metastasis formation. Conversely, pro-angiogenic treatment increases primary tumor size, yet it dramatically suppresses the formation of CTC clusters and metastasis. Thus, intra-tumor hypoxia leads to the formation of clustered CTCs with high metastatic ability, and a pro-angiogenic therapy suppresses metastasis formation through prevention of CTC cluster generation.


Asunto(s)
Hipoxia de la Célula/inmunología , Células Neoplásicas Circulantes/inmunología , Proteómica/métodos , Animales , Femenino , Humanos , Masculino , Ratones
7.
Nature ; 587(7832): 126-132, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32879494

RESUMEN

Chromosomal instability in cancer consists of dynamic changes to the number and structure of chromosomes1,2. The resulting diversity in somatic copy number alterations (SCNAs) may provide the variation necessary for tumour evolution1,3,4. Here we use multi-sample phasing and SCNA analysis of 1,421 samples from 394 tumours across 22 tumour types to show that continuous chromosomal instability results in pervasive SCNA heterogeneity. Parallel evolutionary events, which cause disruption in the same genes (such as BCL9, MCL1, ARNT (also known as HIF1B), TERT and MYC) within separate subclones, were present in 37% of tumours. Most recurrent losses probably occurred before whole-genome doubling, that was found as a clonal event in 49% of tumours. However, loss of heterozygosity at the human leukocyte antigen (HLA) locus and loss of chromosome 8p to a single haploid copy recurred at substantial subclonal frequencies, even in tumours with whole-genome doubling, indicating ongoing karyotype remodelling. Focal amplifications that affected chromosomes 1q21 (which encompasses BCL9, MCL1 and ARNT), 5p15.33 (TERT), 11q13.3 (CCND1), 19q12 (CCNE1) and 8q24.1 (MYC) were frequently subclonal yet appeared to be clonal within single samples. Analysis of an independent series of 1,024 metastatic samples revealed that 13 focal SCNAs were enriched in metastatic samples, including gains in chromosome 8q24.1 (encompassing MYC) in clear cell renal cell carcinoma and chromosome 11q13.3 (encompassing CCND1) in HER2+ breast cancer. Chromosomal instability may enable the continuous selection of SCNAs, which are established as ordered events that often occur in parallel, throughout tumour evolution.


Asunto(s)
Inestabilidad Cromosómica/genética , Evolución Molecular , Cariotipo , Metástasis de la Neoplasia/genética , Neoplasias/genética , Cromosomas Humanos Par 11/genética , Cromosomas Humanos Par 8/genética , Células Clonales/metabolismo , Células Clonales/patología , Ciclina E/genética , Variaciones en el Número de Copia de ADN/genética , Femenino , Humanos , Pérdida de Heterocigocidad/genética , Masculino , Mutagénesis , Metástasis de la Neoplasia/patología , Neoplasias/patología , Proteínas Oncogénicas/genética
8.
J Exp Med ; 217(8)2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32644115

RESUMEN

Circulating tumor cells are tumor-derived pioneers responsible for the metastatic spread of cancer. Here, we outline recent discoveries, challenges, and future trends for circulating tumor cell investigations, arguing that the time is coming for translation of this work into clinical practice.


Asunto(s)
Biomarcadores de Tumor , Células Neoplásicas Circulantes , Investigación Biomédica Traslacional , Biomarcadores de Tumor/inmunología , Biomarcadores de Tumor/metabolismo , Humanos , Células Neoplásicas Circulantes/inmunología , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patología
9.
Sci Adv ; 6(20): eaaz3559, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32426497

RESUMEN

B cells contribute to immune responses through the production of immunoglobulins, antigen presentation, and cytokine production. Several B cell subsets with distinct functions and polarized cytokine profiles have been reported. In this study, we used transcriptomics analysis of immortalized B cell clones to identify an IgG4+ B cell subset with a unique function. These B cells are characterized by simultaneous expression of proangiogenic cytokines including VEGF, CYR61, ADM, FGF2, PDGFA, and MDK. Consequently, supernatants from these clones efficiently promote endothelial cell tube formation. We identified CD49b and CD73 as surface markers identifying proangiogenic B cells. Circulating CD49b+CD73+ B cells showed significantly increased frequency in patients with melanoma and eosinophilic esophagitis (EoE), two diseases associated with angiogenesis. In addition, tissue-infiltrating IgG4+CD49b+CD73+ B cells expressing proangiogenic cytokines were detected in patients with EoE and melanoma. Our results demonstrate a previously unidentified proangiogenic B cell subset characterized by expression of CD49b, CD73, and proangiogenic cytokines.


Asunto(s)
Subgrupos de Linfocitos B , Esofagitis Eosinofílica , Melanoma , Subgrupos de Linfocitos B/metabolismo , Citocinas/metabolismo , Humanos , Inmunoglobulina G , Inflamación , Integrina alfa2 , Melanoma/genética
10.
Genome Med ; 12(1): 31, 2020 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-32192534

RESUMEN

The analysis of circulating tumor cells (CTCs) is an outstanding tool to provide insights into the biology of metastatic cancers, to monitor disease progression and with potential for use in liquid biopsy-based personalized cancer treatment. These goals are ambitious, yet recent studies are already allowing a sharper understanding of the strengths, challenges, and opportunities provided by liquid biopsy approaches. For instance, through single-cell-resolution genomics and transcriptomics, it is becoming increasingly clear that CTCs are heterogeneous at multiple levels and that only a fraction of them is capable of initiating metastasis. It also appears that CTCs adopt multiple ways to enhance their metastatic potential, including homotypic clustering and heterotypic interactions with immune and stromal cells. On the clinical side, both CTC enumeration and molecular analysis may provide new means to monitor cancer progression and to take individualized treatment decisions, but their use for early cancer detection appears to be challenging compared to that of other tumor derivatives such as circulating tumor DNA. In this review, we summarize current data on CTC biology and CTC-based clinical applications that are likely to impact our understanding of the metastatic process and to influence the clinical management of patients with metastatic cancer, including new prospects that may favor the implementation of precision medicine.


Asunto(s)
Neoplasias/sangre , Células Neoplásicas Circulantes/metabolismo , Animales , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Humanos , Biopsia Líquida/métodos , Metástasis de la Neoplasia , Neoplasias/patología , Células Neoplásicas Circulantes/patología
11.
Recent Results Cancer Res ; 215: 347-368, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31605238

RESUMEN

Next-generation sequencing of DNA and RNA obtained from liquid biopsies of cancer patients may reveal important insights into disease progression and metastasis formation, and it holds the promise to enable new methods for noninvasive screening and clinical decision support. However, implementing liquid biopsy sequencing protocols is challenged by capturing circulating tumor cells or cell-free tumor DNA from blood samples, by amplifying genomic DNA and RNA in a reliable and unbiased manner, and by extracting biologically meaningful signals from the noisy sequencing data. In this chapter, we discuss computational methods for the analysis of DNA and RNA sequencing data obtained from liquid biopsies, addressing these challenges.


Asunto(s)
ADN Tumoral Circulante/análisis , ADN Tumoral Circulante/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Biopsia Líquida , Neoplasias/diagnóstico , Neoplasias/genética , Análisis de Secuencia de ADN/métodos , Análisis de Secuencia de ARN/métodos , ADN Tumoral Circulante/sangre , Humanos
12.
J Allergy Clin Immunol ; 145(2): 619-631.e2, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31783056

RESUMEN

BACKGROUND: p-Phenylenediamine (PPD) is a strong contact allergen used in hair dye that is known to cause allergic contact dermatitis (ACD). Both private and occupational exposure to PPD is frequent, but the effect of PPD exposure in nonallergic occupationally exposed subjects is unknown. OBJECTIVE: We sought to investigate the effects of PPD exposure on the skin of occupationally exposed subjects with and without clinical symptoms. METHODS: Skin biopsy specimens were collected from 4 patients with mild and 5 patients with severe PPD-related ACD and 7 hairdressers without contact dermatitis on day 4 after patch testing with 1% PPD in petrolatum. RNA sequencing and transcriptomics analyses were performed and confirmed by using quantitative RT-PCR. Protein expression was analyzed in skin from 4 hairdressers and 1 patient with ACD by using immunofluorescence staining. Reconstructed human epidermis was used to test the effects of PPD in vitro. RESULTS: RNA sequencing demonstrated downregulation of tight junction and stratum corneum proteins in the skin of patients with severe ACD after PPD exposure. Claudin-1 (CLDN-1), CLDN8, CLDN11, CXADR-like membrane protein (CLMP), occludin (OCLN), membrane-associated guanylate kinase inverted 1 (MAGI1), and MAGI2 mRNA expression was downregulated in patients with severe ACD. CLDN1 and CLMP expression were downregulated in nonresponding hairdressers and patients with mild ACD. Filaggrin 1 (FLG1), FLG2, and loricrin (LOR) expression were downregulated in patients with ACD. Confocal microscopic images showed downregulation of CLDN-1, FLG-1, and FLG-2 expression. In contrast, 3-dimensional skin cultures showed upregulation of FLG-1 in response to PPD but downregulation of FLG-2. CONCLUSION: PPD-exposed skin is associated with extensive transcriptomic changes, including downregulation of tight junction and stratum corneum proteins, even in the absence of clinical symptoms.


Asunto(s)
Tinturas para el Cabello/efectos adversos , Exposición Profesional/efectos adversos , Fenilendiaminas/efectos adversos , Piel/efectos de los fármacos , Adulto , Dermatitis Alérgica por Contacto/etiología , Dermatitis Alérgica por Contacto/patología , Femenino , Proteínas Filagrina , Humanos , Piel/patología , Proteínas de Uniones Estrechas/efectos de los fármacos
13.
Sci Rep ; 9(1): 20158, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882973

RESUMEN

Chronic obstructive pulmonary disease (COPD) is induced by cigarette smoking and characterized by inflammation of airway tissue. Since smokers with COPD have a higher risk of developing lung cancer than those without, we hypothesized that they carry more mutations in affected tissue. We called somatic mutations in airway brush samples from medium-coverage whole genome sequencing data from healthy never and ex-smokers (n = 8), as well as from ex-smokers with variable degrees of COPD (n = 4). Owing to the limited concordance of resulting calls between the applied tools we built a consensus, a strategy that was validated with high accuracy for cancer data. However, consensus calls showed little promise of representing true positives due to low mappability of corresponding sequence reads and high overlap with positions harbouring known genetic polymorphisms. A targeted re-sequencing approach suggested that only few mutations would survive stringent verification testing and that our data did not allow the inference of any difference in the mutational load of bronchial brush samples between former smoking COPD cases and controls. High polyclonality in airway brush samples renders medium-depth sequencing insufficient to provide the resolution to detect somatic mutations. Deep sequencing data of airway biopsies are needed to tackle the question.


Asunto(s)
Biomarcadores , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Pulmón/metabolismo , Pulmón/patología , Mutación , Enfermedad Pulmonar Obstructiva Crónica/diagnóstico , Enfermedad Pulmonar Obstructiva Crónica/etiología , Anciano , Biopsia , Fumar Cigarrillos/efectos adversos , Biología Computacional , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Pruebas de Función Respiratoria , Factores de Riesgo , Índice de Severidad de la Enfermedad , Secuenciación Completa del Genoma
14.
J Vis Exp ; (147)2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31157780

RESUMEN

Blood-borne metastasis accounts for most cancer-related deaths and involves circulating tumor cells (CTCs) that are successful in establishing new tumors at distant sites. CTCs are found in the bloodstream of patients as single cells (single CTCs) or as multicellular aggregates (CTC clusters and CTC-white blood cell clusters), with the latter displaying a higher metastatic ability. Beyond enumeration, phenotypic and molecular analysis is extraordinarily important to dissect CTC biology and to identify actionable vulnerabilities. Here, we provide a detailed description of a workflow that includes CTC immunostaining and micromanipulation, ex vivo culture to assess proliferative and survival capabilities of individual cells, and in vivo metastasis-formation assays. Additionally, we provide a protocol to achieve the dissociation of CTC clusters into individual cells and the investigation of intra-cluster heterogeneity. With these approaches, for instance, we precisely quantify survival and proliferative potential of single CTCs and individual cells within CTC clusters, leading us to the observation that cells within clusters display better survival and proliferation in ex vivo cultures compared to single CTCs. Overall, our workflow offers a platform to dissect the characteristics of CTCs at the single cell level, aiming towards the identification of metastasis-relevant pathways and a better understanding of CTC biology.


Asunto(s)
Metástasis de la Neoplasia/diagnóstico , Células Neoplásicas Circulantes , Animales , Humanos , Ratones , Micromanipulación , Metástasis de la Neoplasia/patología
15.
Nature ; 566(7745): 553-557, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30728496

RESUMEN

A better understanding of the features that define the interaction between cancer cells and immune cells is important for the development of new cancer therapies1. However, focus is often given to interactions that occur within the primary tumour and its microenvironment, whereas the role of immune cells during cancer dissemination in patients remains largely uncharacterized2,3. Circulating tumour cells (CTCs) are precursors of metastasis in several types of cancer4-6, and are occasionally found within the bloodstream in association with non-malignant cells such as white blood cells (WBCs)7,8. The identity and function of these CTC-associated WBCs, as well as the molecular features that define the interaction between WBCs and CTCs, are unknown. Here we isolate and characterize individual CTC-associated WBCs, as well as corresponding cancer cells within each CTC-WBC cluster, from patients with breast cancer and from mouse models. We use single-cell RNA sequencing to show that in the majority of these cases, CTCs were associated with neutrophils. When comparing the transcriptome profiles of CTCs associated with neutrophils against those of CTCs alone, we detect a number of differentially expressed genes that outline cell cycle progression, leading to more efficient metastasis formation. Further, we identify cell-cell junction and cytokine-receptor pairs that define CTC-neutrophil clusters, representing key vulnerabilities of the metastatic process. Thus, the association between neutrophils and CTCs drives cell cycle progression within the bloodstream and expands the metastatic potential of CTCs, providing a rationale for targeting this interaction in treatment of breast cancer.


Asunto(s)
Neoplasias de la Mama/patología , Ciclo Celular , Metástasis de la Neoplasia/patología , Células Neoplásicas Circulantes/patología , Neutrófilos/patología , Animales , Neoplasias de la Mama/terapia , Ciclo Celular/genética , Línea Celular Tumoral , Proliferación Celular , Exones/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Uniones Intercelulares , Ratones , Mutación/genética , Metástasis de la Neoplasia/genética , Células Neoplásicas Circulantes/metabolismo , Neutrófilos/metabolismo , Análisis de Secuencia de ARN , Secuenciación del Exoma
16.
J Allergy Clin Immunol ; 143(6): 2190-2201.e9, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30682454

RESUMEN

BACKGROUND: Group 2 innate lymphoid cells (ILC2s) play critical roles in induction and exacerbation of allergic airway inflammation. Thus clarification of the mechanisms that underlie regulation of ILC2 activation has received significant attention. Although innate lymphoid cells are divided into 3 major subsets that mirror helper effector T-cell subsets, counterpart subsets of regulatory T cells have not been well characterized. OBJECTIVE: We sought to determine the factors that induce regulatory innate lymphoid cells (ILCregs). METHODS: IL-10+ ILCregs induced from ILC2s by using retinoic acid (RA) were analyzed with RNA-sequencing and flow cytometry. ILCregs were evaluated in human nasal tissue from healthy subjects and patients with chronic rhinosinusitis with nasal polyps and lung tissue from house dust mite- or saline-treated mice. RESULTS: RA induced IL-10 secretion by human ILC2s but not type 2 cytokines. IL-10+ ILCregs, which were converted from ILC2s by means of RA stimulation, expressed a regulatory T cell-like signature with expression of IL-10, cytotoxic T lymphocyte-associated protein 4, and CD25, with downregulated effector type 2-related markers, such as chemoattractant receptor-homologous molecule on TH2 cells and ST2, and suppressed activation of CD4+ T cells and ILC2s. ILCregs were rarely detected in human nasal tissue from healthy subjects or lung tissue from saline-treated mice, but numbers were increased in nasal tissue from patients with chronic rhinosinusitis with nasal polyps and in lung tissue from house dust mite-treated mice. Enzymes for RA synthesis were upregulated in airway epithelial cells during type 2 inflammation in vivo and by IL-13 in vitro. CONCLUSION: We have identified a unique immune regulatory and anti-inflammatory pathway by which RA converts ILC2s to ILCregs. Interactions between airway epithelial cells and ILC2s play an important roles in the generation of ILCregs.


Asunto(s)
Antiinflamatorios/farmacología , Linfocitos/efectos de los fármacos , Tretinoina/farmacología , Animales , Línea Celular , Citocinas/inmunología , Células Epiteliales/inmunología , Humanos , Inmunidad Innata , Pulmón/inmunología , Linfocitos/inmunología , Ratones Endogámicos C57BL , Senos Paranasales/inmunología
17.
Cell ; 176(1-2): 98-112.e14, 2019 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-30633912

RESUMEN

The ability of circulating tumor cells (CTCs) to form clusters has been linked to increased metastatic potential. Yet biological features and vulnerabilities of CTC clusters remain largely unknown. Here, we profile the DNA methylation landscape of single CTCs and CTC clusters from breast cancer patients and mouse models on a genome-wide scale. We find that binding sites for stemness- and proliferation-associated transcription factors are specifically hypomethylated in CTC clusters, including binding sites for OCT4, NANOG, SOX2, and SIN3A, paralleling embryonic stem cell biology. Among 2,486 FDA-approved compounds, we identify Na+/K+ ATPase inhibitors that enable the dissociation of CTC clusters into single cells, leading to DNA methylation remodeling at critical sites and metastasis suppression. Thus, our results link CTC clustering to specific changes in DNA methylation that promote stemness and metastasis and point to cluster-targeting compounds to suppress the spread of cancer.


Asunto(s)
Neoplasias de la Mama/genética , Metástasis de la Neoplasia/genética , Células Neoplásicas Circulantes/patología , Animales , Neoplasias de la Mama/patología , Diferenciación Celular , Línea Celular Tumoral , Proliferación Celular , Metilación de ADN/fisiología , Modelos Animales de Enfermedad , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Proteína Homeótica Nanog/metabolismo , Metástasis de la Neoplasia/fisiopatología , Células Neoplásicas Circulantes/metabolismo , Factor 3 de Transcripción de Unión a Octámeros/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción SOXB1/metabolismo , Complejo Correpresor Histona Desacetilasa y Sin3
18.
Breast Cancer Res ; 20(1): 141, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30458879

RESUMEN

BACKGROUND: The presence of circulating tumor cells (CTCs) in patients with breast cancer correlates to a bad prognosis. Yet, CTCs are detectable in only a minority of patients with progressive breast cancer, and factors that influence the abundance of CTCs remain elusive. METHODS: We conducted CTC isolation and enumeration in a selected group of 73 consecutive patients characterized by progressive invasive breast cancer, high tumor load and treatment discontinuation at the time of CTC isolation. CTCs were quantified with the Parsortix microfluidic device. Clinicopathological variables, blood counts at the time of CTC isolation and detailed treatment history prior to blood sampling were evaluated for each patient. RESULTS: Among 73 patients, we detected at least one CTC per 7.5 ml of blood in 34 (46%). Of these, 22 (65%) had single CTCs only, whereas 12 (35%) featured both single CTCs and CTC clusters. Treatment with the monoclonal antibody denosumab correlated with the absence of CTCs, both when considering all patients and when considering only those with bone metastasis. We also found that low red blood cell count was associated with the presence of CTCs, whereas high CA 15-3 tumor marker, high mean corpuscular volume, high white blood cell count and high mean platelet volume associated specifically with CTC clusters. CONCLUSIONS: In addition to blood count correlatives to single and clustered CTCs, we found that denosumab treatment associates with most patients lacking CTCs from their peripheral circulation. Prospective studies will be needed to validate the involvement of denosumab in the prevention of CTC generation.


Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Denosumab/farmacología , Eritrocitos , Células Neoplásicas Circulantes/efectos de los fármacos , Anciano , Antineoplásicos/uso terapéutico , Mama/patología , Neoplasias de la Mama/sangre , Neoplasias de la Mama/patología , Recuento de Células/métodos , Denosumab/uso terapéutico , Progresión de la Enfermedad , Femenino , Humanos , Técnicas Analíticas Microfluídicas/métodos , Persona de Mediana Edad , Invasividad Neoplásica/patología , Pronóstico , Estudios Retrospectivos
19.
Br J Cancer ; 119(4): 487-491, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30065256

RESUMEN

Human glioblastoma (GBM) is a highly aggressive, invasive and hypervascularised malignant brain cancer. Individual circulating tumour cells (CTCs) are sporadically found in GBM patients, yet it is unclear whether multicellular CTC clusters are generated in this disease and whether they can bypass the physical hurdle of the blood-brain barrier.  Here, we assessed CTC presence and composition at multiple time points in 13 patients with progressing GBM during an open-label phase 1/2a study with the microtubule inhibitor BAL101553. We observe CTC clusters ranging from 2 to 23 cells and present at multiple sampling time points in a GBM patient with pleomorphism and extensive necrosis, throughout disease progression. Exome sequencing of GBM CTC clusters highlights variants in 58 cancer-associated genes including ATM, PMS2, POLE, APC, XPO1, TFRC, JAK2, ERBB4 and ALK. Together, our findings represent the first evidence of the presence of CTC clusters in GBM.


Asunto(s)
Bencimidazoles/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Células Neoplásicas Circulantes/patología , Oxadiazoles/administración & dosificación , Animales , Bencimidazoles/farmacología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Recuento de Células , Análisis por Conglomerados , Progresión de la Enfermedad , Femenino , Redes Reguladoras de Genes/efectos de los fármacos , Variación Genética , Glioblastoma/genética , Glioblastoma/patología , Humanos , Masculino , Ratones , Mutación , Células Neoplásicas Circulantes/química , Células Neoplásicas Circulantes/efectos de los fármacos , Oxadiazoles/farmacología , Secuenciación del Exoma , Ensayos Antitumor por Modelo de Xenoinjerto
20.
Genes (Basel) ; 9(7)2018 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-29973527

RESUMEN

Joint pain causes significant morbidity in osteoarthritis (OA). The aetiology of joint pain in OA is not well understood. The synovial membrane as an innervated joint structure represents a potential source of peripheral pain in OA. Here we analyse, using a hypothesis-free next generation RNA sequencing, the differences in protein-coding and non-coding transcriptomes in knee synovial tissues from OA patients with high knee pain (n = 5) compared with OA patients with low knee pain (n = 5), as evaluated by visual analogue scale (VAS). We conduct Gene Ontology and pathway analyses on differentially expressed mRNA genes. We identify new protein-coding, long non-coding RNA and microRNA candidates that can be associated with OA joint pain. Top enriched genes in painful OA knees encode neuronal proteins that are known to promote neuronal survival under cellular stress or participate in calcium-dependent synaptic exocytosis and modulation of GABA(γ-aminobutyric acid)ergic activity. Our study uncovers transcriptome changes associated with pain in synovial microenvironment of OA knees. This sets a firm ground for future mechanistic studies and drug discovery to alleviate joint pain in OA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...