Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Colloids Surf B Biointerfaces ; 230: 113508, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37562121

RESUMEN

Stimuli-responsive nanocarriers are being widely applied in the development of new strategies for the diagnosis and treatment of diseases. An inherent difficulty in general drug therapy is the lack of precision with respect to a specific pathological site, which can lead to toxicity, excessive drug consumption, or premature degradation. In this work, the controlled drug delivery is achieved by using magnetite nanoparticles coated with mesoporous silica with core-shell structure (MMS) and grafted with the thermoresponsive polymer poly [N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate] (MMS-P). The efficiency of MMS-P as a temperature-controlled drug delivery system was evaluated by in vitro release experiments using ibuprofen (IBU) in various mammalian cell models. Further, the effects of IBU as a photoprotectant in cells exposed to photodynamic therapy (PDT) in a carbaryl-induced neurodegenerative model were evaluated. The results showed that MMS-P nanocarriers do not exhibit cytotoxicity in HepG2 cells at high doses such as 7600 µg mL-1. Pre-incubation of MMS-P charged with IBU showed no effect on the PDT in N2A cells; however, it produced a further decrease in the viability of HepG2 cells, leading to a reduction to PDT resistance. On the other hand, a cytoprotective effect against carbaryl toxicity in N2A cells was observed in IBU administrated by MMS-P, which confirms the effective intracellular IBU uptake by means of MMS-P. These results encourage the potential application of MMS-P as a drug delivery system and confirm the effect of IBU as a cytoprotective agent in a neurodegenerative model.


Asunto(s)
Ibuprofeno , Nanopartículas , Ibuprofeno/química , Carbaril , Sistemas de Liberación de Medicamentos , Polímeros/química , Fenómenos Magnéticos , Dióxido de Silicio/química , Nanopartículas/química
2.
ACS Omega ; 6(19): 12567-12576, 2021 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-34056407

RESUMEN

Plasmonic metal nanoparticles (NPs) can be used as enhancers of the efficiency of standard photosensitizers (PSs) in photodynamic therapy (PDT). Protein corona, the adsorption layer that forms spontaneously around NPs once in contact with biological fluids, determines to a great extent the efficiency of PDT. In this work, we explore the possibility that pectin-coated Au NPs (Au@Pec NPs) could act as adjuvants in riboflavin (Rf)-based PDT by comparing the photodamage in HeLa cells cultured in the presence and in the absence of the NPs. Moreover, we investigate the impact that the preincubation of Rf and Au@Pec NPs (or Ag@Pec NPs) at two very different serum concentrations could have on cell's photodamage. Because reactive oxygen species (ROS) precursors are the excited states of the PS, the effect of proteins on the photophysics of Rf and Rf/plasmonic NPs was studied by transient absorption experiments. The beneficial effect of Au@Pec NPs in Rf-based PDT on HeLa cells cultured under standard serum conditions was demonstrated for the first time. However, the preincubation of Rf and Au@Pec NPs (or Ag@Pec NPs) with serum has undesirable results regarding the enhancement of Rf-based PDT. In this sense, we also verified that more concentrated protein conditions result in lower amounts of the triplet excited state of Rf and thus an expected lower production of ROS, which are the key elements for PDT's efficacy. These findings point out the relevance of serum concentration in the design of in vitro cell culture experiments carried out to determine the best way to combine and use potential sensitizers with plasmonic NPs to develop more effective PDTs.

3.
Artículo en Inglés | MEDLINE | ID: mdl-26653979

RESUMEN

We analyzed chromosomal aberrations involving telomeres in the progeny of mammalian cells exposed to the methylating agent and antineoplastic/diabetogenic drug streptozotocin (STZ), to test whether it induces long-term telomere instability (by chromosome end loss and/or telomere dysfunction). Rat cells (ADIPO-P2 cell line, derived from Sprague-Dawley rat adipose cells) were treated with a single concentration of STZ (2mM). Chromosomal aberrations were analyzed 18h, 10 days, and 15 days after treatment, using PNA-FISH with a pan-telomeric probe [Cy3-(CCCTAA)3] to detect (TTAGGG)n repeats. Cytogenetic analysis revealed a higher frequency of chromosomal aberrations in STZ-exposed cultures vs. untreated cultures at each time point analyzed. The yield of induced aberrations was very similar at each time point. Induction of aberrations not involving telomere dysfunction was only observed 18h and 15 days after treatment, whereas induction of telomere dysfunction-related aberrations by STZ (mainly in the form of telomere FISH signal loss and duplications, most of them chromatid-type aberrations) was observed at each time point. Our results show that STZ induces persistent telomere instability in mammalian cells, cytogenetically manifested as telomere dysfunction-related chromosomal aberrations. Neither telomere length nor telomerase activity is related to the telomere dysfunction.


Asunto(s)
Aberraciones Cromosómicas/inducido químicamente , Estreptozocina/efectos adversos , Telómero/efectos de los fármacos , Tejido Adiposo/citología , Tejido Adiposo/efectos de los fármacos , Animales , Línea Celular , Análisis Citogenético , Inestabilidad Genómica/efectos de los fármacos , Humanos , Hibridación Fluorescente in Situ , Células Jurkat , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Ratas Sprague-Dawley , Telómero/patología
4.
Mutat Res ; 760: 16-23, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24406867

RESUMEN

We analyzed the chromosomal aberrations involving telomeres in the progeny of mammalian cells exposed to the radiomimetic compound streptonigrin (SN) in order to determine if this antineoplastic drug induces long-term telomere instability. To this end, rat cells (ADIPO-P2 cell line, derived from adipose cells from Sprague-Dawley rat) were treated with a single concentration of SN (100ng/ml), and chromosomal aberrations were analyzed 18h and 10 and 15 days after treatment by using PNA-FISH with a pan-telomeric probe [Cy3-(CCCTAA)3] to detect (TTAGGG)n repeats. Cytogenetic analysis revealed a higher frequency of telomere dysfunction-related aberrations (additional telomeric FISH signals, extra-chromosomal telomeric FISH signals, and telomere FISH signal loss and duplications) in SN-exposed cultures vs. untreated cultures at every time points analyzed. The yield of SN-induced aberrations remained very similar at 18h, 10 days as well as 15 days after treatment. Thus, our data demonstrate that SN induces persistent telomere dysfunction in mammalian cells. Moreover, we found that the level of telomerase activity in SN-treated cells was significantly lower (up to 77%) than that of untreated control cells at each time points analyzed. This fact suggests that telomerase could be involved in SN-induced telomere dysfunction.


Asunto(s)
Tejido Adiposo/patología , Antibióticos Antineoplásicos/toxicidad , Aberraciones Cromosómicas/efectos de los fármacos , Fibroblastos/patología , Estreptonigrina/toxicidad , Telómero/patología , Tejido Adiposo/efectos de los fármacos , Animales , Células Cultivadas , Fibroblastos/efectos de los fármacos , Hibridación Fluorescente in Situ , Ratas , Ratas Sprague-Dawley , Telómero/efectos de los fármacos
5.
Mutat Res ; 734(1-2): 5-11, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22564429

RESUMEN

We analyzed the chromosomal aberrations involving telomeres in the progeny of mammalian cells exposed to the radiomimetic compound bleomycin (BLM) in order to determine if this antineoplastic drug induces long-term telomere instability. To this end, rat cells (ADIPO-P2 cell line, derived from adipose cells from Sprague-Dawley rat) were treated with a single concentration of BLM (2.5 µg/ml), and chromosomal aberrations were analyzed 18 h and 10 days after treatment by using PNA-FISH with a pan-telomeric probe [(TTAGGG)n repeats]. Cytogenetic analysis revealed a higher frequency of aberrations at 18 h and 10 days after treatment in BLM-exposed cultures vs. untreated cultures, although the yield of BLM-induced aberrations 10 days after treatment decreased about 25% compared with the one at 18 h after treatment. Moreover, the level of telomerase activity in BLM-treated cells compared with that of untreated control cells was significantly higher at 10 days after treatment, but did not differ at 18 h after treatment. These data indicate that in terms of unstable aberrations, the in vitro clastogenic effect of BLM on ADIPO-P2 cells persists for at least 10 days after exposure. In addition, our data demonstrate, for the first time, that BLM-induced telomere instability in mammalian cells (cytogenetically detectable as incomplete chromosome elements and telomere FISH signal loss and duplication) persists for several generations after exposure. Moreover, the appearance of telomere fusions in BLM-exposed cells 10 days after treatment suggests that this compound can induce delayed telomere instability. The increase in telomerase activity in BLM-exposed cells 10 days after treatment is accompanied by the presence of aberrations directly related to telomere dysfunction. This fact suggests that telomerase is not directly involved in BLM-induced telomere instability.


Asunto(s)
Antibióticos Antineoplásicos/toxicidad , Bleomicina/toxicidad , Aberraciones Cromosómicas/inducido químicamente , Mutágenos/toxicidad , Telómero/efectos de los fármacos , Tejido Adiposo/citología , Tejido Adiposo/efectos de los fármacos , Animales , Línea Celular , Ratas , Ratas Sprague-Dawley , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA