Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4683, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824131

RESUMEN

The human mitochondrial genome is transcribed into two RNAs, containing mRNAs, rRNAs and tRNAs, all dedicated to produce essential proteins of the respiratory chain. The precise excision of tRNAs by the mitochondrial endoribonucleases (mt-RNase), P and Z, releases all RNA species from the two RNA transcripts. The tRNAs then undergo 3'-CCA addition. In metazoan mitochondria, RNase P is a multi-enzyme assembly that comprises the endoribonuclease PRORP and a tRNA methyltransferase subcomplex. The requirement for this tRNA methyltransferase subcomplex for mt-RNase P cleavage activity, as well as the mechanisms of pre-tRNA 3'-cleavage and 3'-CCA addition, are still poorly understood. Here, we report cryo-EM structures that visualise four steps of mitochondrial tRNA maturation: 5' and 3' tRNA-end processing, methylation and 3'-CCA addition, and explain the defined sequential order of the tRNA processing steps. The methyltransferase subcomplex recognises the pre-tRNA in a distinct mode that can support tRNA-end processing and 3'-CCA addition, likely resulting from an evolutionary adaptation of mitochondrial tRNA maturation complexes to the structurally-fragile mitochondrial tRNAs. This subcomplex can also ensure a tRNA-folding quality-control checkpoint before the sequential docking of the maturation enzymes. Altogether, our study provides detailed molecular insight into RNA-transcript processing and tRNA maturation in human mitochondria.


Asunto(s)
Mitocondrias , ARN de Transferencia , Ribonucleasa P , ARNt Metiltransferasas , Humanos , ARN de Transferencia/metabolismo , ARN de Transferencia/genética , ARN de Transferencia/química , Mitocondrias/metabolismo , Ribonucleasa P/metabolismo , Ribonucleasa P/genética , Ribonucleasa P/química , ARNt Metiltransferasas/metabolismo , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/química , Procesamiento Postranscripcional del ARN , Microscopía por Crioelectrón , ARN Mitocondrial/metabolismo , ARN Mitocondrial/genética , ARN Mitocondrial/química , Metilación , Conformación de Ácido Nucleico , Modelos Moleculares , Precursores del ARN/metabolismo , Precursores del ARN/genética
2.
Nucleic Acids Res ; 51(19): 10653-10667, 2023 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-37650648

RESUMEN

As essential components of the protein synthesis machinery, tRNAs undergo a tightly controlled biogenesis process, which include the incorporation of numerous posttranscriptional modifications. Defects in these tRNA maturation steps may lead to the degradation of hypomodified tRNAs by the rapid tRNA decay (RTD) and nuclear surveillance pathways. We previously identified m1A58 as a late modification introduced after modifications Ψ55 and T54 in yeast elongator tRNAPhe. However, previous reports suggested that m1A58 is introduced early during the tRNA modification process, in particular on primary transcripts of initiator tRNAiMet, which prevents its degradation by RNA decay pathways. Here, aiming to reconcile this apparent inconsistency on the temporality of m1A58 incorporation, we examined its introduction into yeast elongator and initiator tRNAs. We used specifically modified tRNAs to report on the molecular aspects controlling the Ψ55 → T54 → m1A58 modification circuit in elongator tRNAs. We also show that m1A58 is efficiently introduced on unmodified tRNAiMet, and does not depend on prior modifications. Finally, we show that m1A58 has major effects on the structural properties of initiator tRNAiMet, so that the tRNA elbow structure is only properly assembled when this modification is present. This observation provides a structural explanation for the degradation of hypomodified tRNAiMet lacking m1A58 by the nuclear surveillance and RTD pathways.


Asunto(s)
ARN de Transferencia de Metionina , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ARN de Transferencia de Metionina/genética , ARN de Transferencia de Metionina/metabolismo , ARN de Transferencia/metabolismo , Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN
3.
Nucleic Acids Res ; 50(10): 5793-5806, 2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35580049

RESUMEN

Chemical synthesis of RNA conjugates has opened new strategies to study enzymatic mechanisms in RNA biology. To gain insights into poorly understood RNA nucleotide methylation processes, we developed a new method to synthesize RNA-conjugates for the study of RNA recognition and methyl-transfer mechanisms of SAM-dependent m6A RNA methyltransferases. These RNA conjugates contain a SAM cofactor analogue connected at the N6-atom of an adenosine within dinucleotides, a trinucleotide or a 13mer RNA. Our chemical route is chemo- and regio-selective and allows flexible modification of the RNA length and sequence. These compounds were used in crystallization assays with RlmJ, a bacterial m6A rRNA methyltransferase. Two crystal structures of RlmJ in complex with RNA-SAM conjugates were solved and revealed the RNA-specific recognition elements used by RlmJ to clamp the RNA substrate in its active site. From these structures, a model of a trinucleotide bound in the RlmJ active site could be built and validated by methyltransferase assays on RlmJ mutants. The methyl transfer by RlmJ could also be deduced. This study therefore shows that RNA-cofactor conjugates are potent molecular tools to explore the active site of RNA modification enzymes.


Asunto(s)
Metiltransferasas , ARN , Adenosina , Dominio Catalítico , Metilación , Metiltransferasas/metabolismo , ARN/metabolismo
4.
Viruses ; 14(3)2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35337039

RESUMEN

The nucleocapsid domain (NCd), located at the C-terminus of the HIV-1 Gag protein, is involved in numerous stages of the replication cycle, such as the packaging of the viral genome and reverse transcription. It exists under different forms through the viral life cycle, depending on the processing of Gag by the HIV-1 protease. NCd is constituted of two adjacent zinc knuckles (ZK1 and ZK2), separated by a flexible linker and flanked by disordered regions. Here, conformational equilibria between a major and two minor states were highlighted exclusively in ZK2, by using CPMG and CEST NMR experiments. These minor states appear to be temperature dependent, and their populations are highest at physiological temperature. These minor states are present both in NCp7, the mature form of NCd, and in NCp9 and NCp15, the precursor forms of NCd, with increased populations. The role of these minor states in the targeting of NCd by drugs and its binding properties is discussed.


Asunto(s)
VIH-1 , Proteínas de la Cápside/metabolismo , VIH-1/fisiología , Nucleocápside/metabolismo , ARN Viral/metabolismo , Virión/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
5.
Methods Mol Biol ; 2298: 307-323, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34085253

RESUMEN

During their biosynthesis, transfer RNAs (tRNAs) are decorated with a large number of posttranscriptional chemical modifications. Methods to directly detect the introduction of posttranscriptional modifications during tRNA maturation are rare and do not provide information on the temporality of modification events. Here, we report a methodology, using NMR as a tool to monitor tRNA maturation in a nondisruptive and continuous fashion in cellular extracts. This method requires the production of substrate tRNA transcripts devoid of modifications and active cell extracts containing the necessary cellular enzymatic activities to modify RNA. The present protocol describes these different aspects of our method and reports the time-resolved NMR monitoring of the yeast tRNAPhe maturation as an example. The NMR-based methodology presented here could be adapted to investigate diverse features in tRNA maturation.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Procesamiento Postranscripcional del ARN/genética , ARN de Transferencia/genética , Conformación de Ácido Nucleico , ARN/genética , Saccharomyces cerevisiae/genética
6.
Methods Mol Biol ; 2323: 67-73, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34086274

RESUMEN

For structural, biochemical, or pharmacological studies, it is required to have pure RNA in large quantities. We previously devised a generic approach that allows for efficient in vivo expression of recombinant RNA in Escherichia coli. We have extended the "tRNA scaffold" method to RNA-protein coexpression in order to express and purify RNA by affinity in native condition. As a proof of concept, we present the expression and the purification of the AtRNA-mala in complex with the MS2 coat protein.


Asunto(s)
Cromatografía de Afinidad/métodos , Clonación Molecular/métodos , Proteínas de Escherichia coli/aislamiento & purificación , Escherichia coli/química , Proteínas de Unión al ARN/aislamiento & purificación , ARN/aislamiento & purificación , Ampicilina/farmacología , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/genética , Cápside , Cloranfenicol/farmacología , Simulación por Computador , Farmacorresistencia Microbiana/genética , Electroforesis en Gel de Poliacrilamida/métodos , Escherichia coli/genética , Proteínas de Escherichia coli/biosíntesis , Levivirus/genética , Modelos Moleculares , Conformación de Ácido Nucleico , Regiones Operadoras Genéticas , Plásmidos/genética , ARN/biosíntesis , ARN Bacteriano/genética , ARN Bacteriano/aislamiento & purificación , ARN Viral/genética , ARN Viral/aislamiento & purificación , Proteínas de Unión al ARN/biosíntesis
7.
Nucleic Acids Res ; 49(13): 7239-7255, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34023900

RESUMEN

Gene expression is regulated at many levels including co- or post-transcriptionally, where chemical modifications are added to RNA on riboses and bases. Expression control via RNA modifications has been termed 'epitranscriptomics' to keep with the related 'epigenomics' for DNA modification. One such RNA modification is the N6-methylation found on adenosine (m6A) and 2'-O-methyladenosine (m6Am) in most types of RNA. The N6-methylation can affect the fold, stability, degradation and cellular interaction(s) of the modified RNA, implicating it in processes such as splicing, translation, export and decay. The multiple roles played by this modification explains why m6A misregulation is connected to multiple human cancers. The m6A/m6Am writer enzymes are RNA methyltransferases (MTases). Structures are available for functionally characterized m6A RNA MTases from human (m6A mRNA, m6A snRNA, m6A rRNA and m6Am mRNA MTases), zebrafish (m6Am mRNA MTase) and bacteria (m6A rRNA MTase). For each of these MTases, we describe their overall domain organization, the active site architecture and the substrate binding. We identify areas that remain to be investigated, propose yet unexplored routes for structural characterization of MTase:substrate complexes, and highlight common structural elements that should be described for future m6A/m6Am RNA MTase structures.


Asunto(s)
Adenosina/análogos & derivados , Metiltransferasas/química , Adenosina/metabolismo , Animales , Bacterias/enzimología , Humanos , Metiltransferasas/metabolismo , Proteínas de Pez Cebra/química , Proteínas de Pez Cebra/metabolismo
8.
RNA Biol ; 18(11): 1996-2006, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33541205

RESUMEN

All species transcribe ribosomal RNA in an immature form that requires several enzymes for processing into mature rRNA. The number and types of enzymes utilized for these processes vary greatly between different species. In low G + C Gram-positive bacteria including Bacillus subtilis and Geobacillus stearothermophilus, the endoribonuclease (RNase) M5 performs the final step in 5S rRNA maturation, by removing the 3'- and 5'-extensions from precursor (pre) 5S rRNA. This cleavage activity requires initial complex formation between the pre-rRNA and a ribosomal protein, uL18, making the full M5 substrate a ribonucleoprotein particle (RNP). M5 contains a catalytic N-terminal Toprim domain and an RNA-binding C-terminal domain, respectively, shown to assist in processing and binding of the RNP. Here, we present structural data that show how two Mg2+ ions are accommodated in the active site pocket of the catalytic Toprim domain and investigate the importance of these ions for catalysis. We further perform solution studies that support the previously proposed 3'-before-5' order of removal of the pre-5S rRNA extensions and map the corresponding M5 structural rearrangements during catalysis.


Asunto(s)
Bacillus subtilis/enzimología , Endorribonucleasas/química , Endorribonucleasas/metabolismo , Geobacillus stearothermophilus/enzimología , Magnesio/metabolismo , Precursores del ARN/metabolismo , ARN Bicatenario/metabolismo , ARN Ribosómico 5S/metabolismo , Secuencia de Aminoácidos , Endorribonucleasas/genética , Conformación de Ácido Nucleico , Precursores del ARN/genética , ARN Bicatenario/genética , ARN Ribosómico 5S/genética , Ribosomas/genética , Ribosomas/metabolismo , Especificidad por Sustrato
9.
Viruses ; 12(10)2020 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003650

RESUMEN

HIV-1 Gag polyprotein orchestrates the assembly of viral particles. Its C-terminus consists of the nucleocapsid (NC) domain that interacts with nucleic acids, and p1 and p6, two unstructured regions, p6 containing the motifs to bind ALIX, the cellular ESCRT factor TSG101 and the viral protein Vpr. The processing of Gag by the viral protease subsequently liberates NCp15 (NC-p1-p6), NCp9 (NC-p1) and NCp7, NCp7 displaying the optimal chaperone activity of nucleic acids. This review focuses on the nucleic acid binding properties of the NC domain in the different maturation states during the HIV-1 viral cycle.


Asunto(s)
VIH-1/metabolismo , Ácidos Nucleicos/química , Proteínas de la Nucleocápside/metabolismo , Proteínas de Unión al ADN , Complejos de Clasificación Endosomal Requeridos para el Transporte , VIH-1/genética , Nucleocápside/metabolismo , Unión Proteica , ARN Viral , Factores de Transcripción , Virión/metabolismo , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
10.
Mol Cell ; 80(2): 227-236.e5, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32991829

RESUMEN

The pathways for ribosomal RNA (rRNA) maturation diverge greatly among the domains of life. In the Gram-positive model bacterium, Bacillus subtilis, the final maturation steps of the two large ribosomal subunit (50S) rRNAs, 23S and 5S pre-rRNAs, are catalyzed by the double-strand specific ribonucleases (RNases) Mini-RNase III and RNase M5, respectively. Here we present a protocol that allowed us to solve the 3.0 and 3.1 Å resolution cryoelectron microscopy structures of these RNases poised to cleave their pre-rRNA substrates within the B. subtilis 50S particle. These data provide the first structural insights into rRNA maturation in bacteria by revealing how these RNases recognize and process double-stranded pre-rRNA. Our structures further uncover how specific ribosomal proteins act as chaperones to correctly fold the pre-rRNA substrates and, for Mini-III, anchor the RNase to the ribosome. These r-proteins thereby serve a quality-control function in the process from accurate ribosome assembly to rRNA processing.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/química , Precursores del ARN/metabolismo , Ribonucleasas/química , Subunidades Ribosómicas Grandes Bacterianas/metabolismo , Bacillus subtilis/ultraestructura , Proteínas Bacterianas/ultraestructura , Secuencia de Bases , Microscopía por Crioelectrón , Modelos Moleculares , Precursores del ARN/ultraestructura , Ribonucleasas/ultraestructura , Subunidades Ribosómicas Grandes Bacterianas/ultraestructura , Especificidad por Sustrato
11.
Biomol NMR Assign ; 14(2): 169-174, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32239363

RESUMEN

Transfer RNAs (tRNAs) are heavily decorated with post-transcriptional modifications during their biosynthesis. To fulfil their functions within cells, tRNAs undergo a tightly controlled biogenesis process leading to the formation of mature tRNAs. In particular, the introduction of post-transcriptional modifications in tRNAs is controlled and influenced by multiple factors. In turn, tRNA biological functions are often modulated by their modifications. Although modifications play essential roles in tRNA biology, methods to directly detect their introduction during tRNA maturation are rare and do not easily provide information on the temporality of modification events. To obtain information on the tRNA maturation process, we have developed a methodology, using NMR as a tool to monitor tRNA maturation in a non-disruptive and continuous fashion in cellular extracts. Here we report the 1H,15N chemical shift assignments of imino groups in three forms of the yeast tRNAPhe differing in their modification content. These assignments are a prerequisite for the time-resolved NMR monitoring of yeast tRNAPhe maturation in yeast extracts.


Asunto(s)
Iminas/química , Espectroscopía de Protones por Resonancia Magnética , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Fenilalanina/análisis , Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , Isótopos de Nitrógeno , ARN de Transferencia de Fenilalanina/química
12.
Bio Protoc ; 10(12): e3646, 2020 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-33659318

RESUMEN

Transfer RNAs (tRNAs) are heavily decorated with post-transcriptional modifications during their biosynthesis. To fulfil their functions within cells, tRNAs undergo a tightly controlled biogenesis process leading to the formation of mature tRNAs. In addition, functions of tRNAs are often modulated by their modifications. Although the biological importance of post-transcriptional RNA modifications is widely appreciated, methods to directly detect their introduction during RNA biosynthesis are rare and do not easily provide information on the temporal nature of events. To obtain information on the tRNA maturation process, we have developed a methodology, using NMR as a tool to monitor tRNA maturation in a non-disruptive and continuous fashion in cellular extracts. By following the maturation of a model yeast tRNA with time-resolved NMR, we showed that modifications are introduced in a defined sequential order, and that the chronology is controlled by cross-talk between modification events. The implementation of this method requires the production for NMR spectroscopy of tRNA samples with different modification status, in order to identify the NMR signature of individual modifications. The production of tRNA samples for the analysis of modification pathways with NMR spectroscopy will be presented here and examplified on the yeast tRNAPhe, but can be extended to any other tRNA by changing the sequence of the construct. The protocol describes the production of unmodified tRNA samples by in vitro transcription, and the production of modified tRNA samples by recombinant expression of tRNAs in E. coli.

13.
Nat Commun ; 10(1): 3373, 2019 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-31358763

RESUMEN

Although the biological importance of post-transcriptional RNA modifications in gene expression is widely appreciated, methods to directly detect their introduction during RNA biosynthesis are rare and do not easily provide information on the temporal nature of events. Here, we introduce the application of NMR spectroscopy to observe the maturation of tRNAs in cell extracts. By following the maturation of yeast tRNAPhe with time-resolved NMR measurements, we show that modifications are introduced in a defined sequential order, and that the chronology is controlled by cross-talk between modification events. In particular, we show that a strong hierarchy controls the introduction of the T54, Ψ55 and m1A58 modifications in the T-arm, and we demonstrate that the modification circuits identified in yeast extract with NMR also impact the tRNA modification process in living cells. The NMR-based methodology presented here could be adapted to investigate different aspects of tRNA maturation and RNA modifications in general.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Procesamiento Postranscripcional del ARN , ARN de Transferencia/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , ARNt Metiltransferasas/metabolismo , Secuencia de Bases , Modelos Moleculares , Conformación de Ácido Nucleico , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia de Fenilalanina/química , ARN de Transferencia de Fenilalanina/genética , ARN de Transferencia de Fenilalanina/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Tiempo , ARNt Metiltransferasas/genética
14.
RNA Biol ; 16(6): 798-808, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30879411

RESUMEN

RNA methyltransferases (MTases) catalyse the transfer of a methyl group to their RNA substrates using most-often S-adenosyl-L-methionine (SAM) as cofactor. Only few RNA-bound MTases structures are currently available due to the difficulties in crystallising RNA:protein complexes. The lack of complex structures results in poorly understood RNA recognition patterns and methylation reaction mechanisms. On the contrary, many cofactor-bound MTase structures are available, resulting in well-understood protein:cofactor recognition, that can guide the design of bisubstrate analogues that mimic the state at which both the substrate and the cofactor is bound. Such bisubstrate analogues were recently synthesized for proteins monomethylating the N6-atom of adenine (m6A). These proteins include, amongst others, RlmJ in E. coli and METLL3:METT14 and METTL16 in human. As a proof-of-concept, we here test the ability of the bisubstrate analogues to mimic the substrate:cofactor bound state during catalysis by studying their binding to RlmJ using differential scanning fluorimetry, isothermal titration calorimetry and X-ray crystallography. We find that the methylated adenine base binds in the correct pocket, and thus these analogues could potentially be used broadly to study the RNA recognition and catalytic mechanism of m6A MTases. Two bisubstrate analogues bind RlmJ with micro-molar affinity, and could serve as starting scaffolds for inhibitor design against m6A RNA MTases. The same analogues cause changes in the melting temperature of the m1A RNA MTase, TrmK, indicating non-selective protein:compound complex formation. Thus, optimization of these molecular scaffolds for m6A RNA MTase inhibition should aim to increase selectivity, as well as affinity.


Asunto(s)
Adenina/análogos & derivados , Inhibidores Enzimáticos/química , Proteínas de Escherichia coli/química , Metiltransferasas/química , Adenina/metabolismo , Dominio Catalítico , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/metabolismo , Metiltransferasas/antagonistas & inhibidores , Metiltransferasas/metabolismo , Modelos Moleculares , Conformación Molecular , Unión Proteica , Temperatura
15.
Nucleic Acids Res ; 46(18): 9699-9710, 2018 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-29986076

RESUMEN

During HIV-1 assembly and budding, Gag protein, in particular the C-terminal domain containing the nucleocapsid domain (NCd), p1 and p6, is the site of numerous interactions with viral and cellular factors. Most in vitro studies of Gag have used constructs lacking p1 and p6. Here, using NMR spectroscopy, we show that the p1-p6 region of Gag (NCp15) is largely disordered, but interacts transiently with the NCd. These interactions modify the dynamic properties of the NCd. Indeed, using isothermal titration calorimetry (ITC), we have measured a higher entropic penalty to RNA-binding for the NCd precursor, NCp15, than for the mature form, NCp7, which lacks p1 and p6. We propose that during assembly and budding of virions, concomitant with Gag oligomerization, transient interactions between NCd and p1-p6 become salient and responsible for (i) a higher level of structuration of p6, which favours recruitment of budding partners; and (ii) a higher entropic penalty to RNA-binding at specific sites that favours non-specific binding of NCd at multiple sites on the genomic RNA (gRNA). The contributions of p6 and p1 are sequentially removed via proteolysis during Gag maturation such that the RNA-binding specificity of the mature protein is governed by the properties of NCd.


Asunto(s)
VIH-1/fisiología , Nucleocápside/metabolismo , ARN Viral/metabolismo , Proteínas de Unión al ARN/metabolismo , Virión/metabolismo , Ensamble de Virus/fisiología , VIH-1/genética , Humanos , Conformación de Ácido Nucleico , Multimerización de Proteína/fisiología , ARN Viral/química , Productos del Gen gag del Virus de la Inmunodeficiencia Humana/metabolismo
16.
Biomol NMR Assign ; 12(1): 139-143, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29332151

RESUMEN

During HIV-1 assembly, the Pr55Gag polyprotein precursor (Gag) interacts with the genomic RNA, with lipids of the plasma membrane, with host proteins (ALIX, TSG101) through the ESCRT complex, with the viral protein Vpr and are involved in intermolecular interactions with other Pr55Gag proteins. This network of interactions is responsible for the formation of the viral particle, the selection of genomic RNA and the packaging of Vpr. The C-terminal domain of Gag encompassed in NCp15 is involved in the majority of these interactions, either by its nucleocapsid or its p6 domains. We study the NCp15 protein as a model of the C-terminal domain of Gag to better understand the role of this domain in the assembly and budding of HIV-1. Here, we report the 1H, 13C and 15N chemical shift assignments of NCp15 obtained by heteronuclear multidimensional NMR spectroscopy as well as the analysis of its secondary structure in solution. These assignments of NCp15 pave the way for interaction studies with its numerous partners.


Asunto(s)
Resonancia Magnética Nuclear Biomolecular , Precursores de Proteínas/química , Dominios Proteicos
17.
Chem Commun (Camb) ; 53(6): 1140-1143, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-28054050

RESUMEN

In this work, we report an affordable, sensitive, fast and user-friendly electroanalytical method for monitoring the binding between unlabeled RNA and small compounds in microliter-size droplets using a redox-probe and disposable miniaturized screen-printed electrochemical cells.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Electroquímicas , ARN/química , Bibliotecas de Moléculas Pequeñas/química , Sitios de Unión , Ligandos , Oxidación-Reducción , Tamaño de la Partícula , Propiedades de Superficie
18.
Methods Mol Biol ; 1316: 25-31, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25967050

RESUMEN

For structural, biochemical or pharmacological studies, it is required to have pure RNA in large quantities. We previously devised a generic approach that allows efficient in vivo expression of recombinant RNA in Escherichia coli. We have extended the "tRNA scaffold" method to RNA/protein co-expression in order to express and purify RNA by affinity in native condition. As a proof-of-concept, we present the expression and the purification of the AtRNA-mala in complex with the MS2 coat protein.


Asunto(s)
Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Proteínas/genética , Proteínas/aislamiento & purificación , ARN/genética , ARN/aislamiento & purificación , Conformación de Ácido Nucleico , Unión Proteica , Proteínas/metabolismo , ARN/química , ARN/metabolismo , ARN de Transferencia/química , ARN de Transferencia/genética , ARN de Transferencia/aislamiento & purificación , ARN de Transferencia/metabolismo
19.
ACS Chem Biol ; 9(9): 1950-5, 2014 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-24988251

RESUMEN

The nucleocapsid protein (NC) is a highly conserved protein in diverse HIV-1 subtypes that plays a central role in virus replication, mainly by interacting with conserved nucleic acid sequences. NC is considered a highly profitable drug target to inhibit multiple steps in the HIV-1 life cycle with just one compound, a unique property not shown by any of the other antiretroviral classes. However, most of NC inhibitors developed so far act through an unspecific and potentially toxic mechanism (zinc ejection) and are mainly being investigated as topical microbicides. In an effort to provide specific NC inhibitors that compete for the binding of nucleic acids to NC, here we combined molecular modeling, organic synthesis, biophysical studies, NMR spectroscopy, and antiviral assays to design, synthesize, and characterize an efficient NC inhibitor endowed with antiviral activity in vitro, a desirable property for the development of efficient antiretroviral lead compounds.


Asunto(s)
Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Proteínas de la Nucleocápside/antagonistas & inhibidores , Fármacos Anti-VIH/síntesis química , Calorimetría/métodos , Técnicas de Química Sintética , Relación Dosis-Respuesta a Droga , Evaluación Preclínica de Medicamentos/métodos , VIH-1/química , VIH-1/efectos de los fármacos , Células HeLa/efectos de los fármacos , Células HeLa/virología , Humanos , Espectroscopía de Resonancia Magnética , Modelos Moleculares , Simulación del Acoplamiento Molecular , Proteínas de la Nucleocápside/metabolismo , Relación Estructura-Actividad , Tiazoles/química
20.
Nucleic Acids Res ; 41(15): e150, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23804766

RESUMEN

RNA has emerged as a major player in many cellular processes. Understanding these processes at the molecular level requires homogeneous RNA samples for structural, biochemical and pharmacological studies. We previously devised a generic approach that allows efficient in vivo expression of recombinant RNA in Escherichia coli. In this work, we have extended this method to RNA/protein co-expression. We have engineered several plasmids that allow overexpression of RNA-protein complexes in E. coli. We have investigated the potential of these tools in many applications, including the production of nuclease-sensitive RNAs encapsulated in viral protein pseudo-particles, the co-production of non-coding RNAs with chaperone proteins, the incorporation of a post-transcriptional RNA modification by co-production with the appropriate modifying enzyme and finally the production and purification of an RNA-His-tagged protein complex by nickel affinity chromatography. We show that this last application easily provides pure material for crystallographic studies. The new tools we report will pave the way to large-scale structural and molecular investigations of RNA function and interactions with proteins.


Asunto(s)
Escherichia coli/metabolismo , Mapeo de Interacción de Proteínas/métodos , ARN Bacteriano/metabolismo , ARN/aislamiento & purificación , Proteínas Recombinantes/aislamiento & purificación , Secuencia de Bases , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Escherichia coli/genética , Vectores Genéticos/metabolismo , Levivirus/genética , Levivirus/metabolismo , Metilación , Plásmidos/genética , Plásmidos/metabolismo , ARN/genética , ARN/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Transferencia de Lisina/genética , ARN de Transferencia de Lisina/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...