Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 19 de 19
1.
Biomedicines ; 12(5)2024 May 01.
Article En | MEDLINE | ID: mdl-38790959

Clinical and basic science applications using adipose-derived stem cells (ADSCs) are gaining popularity. The current adipose tissue harvesting procedures introduce nonphysiological conditions, which may affect the overall performance of the isolated ADSCs. In this study, we elucidate the differences between ADSCs isolated from adipose tissues harvested within the first 5 min of the initial surgical incision (well-vascularized, nonpremedicated condition) versus those isolated from adipose tissues subjected to medications and deprived of blood supply during elective free flap procedures (ischemic condition). ADSCs isolated from well-vascularized and ischemic tissues positively immunostained for several standard stem cell markers. Interestingly, the percent change in the CD36 expression for ADSCs isolated from ischemic versus well-vascularized tissue was significantly lower in males than females (p < 0.05). Upon differentiation and maturation to adipocytes, spheroids formed using ADSCs isolated from ischemic adipose tissue had lower triglyceride content compared to those formed using ADSCs isolated from the well-vascularized tissue (p < 0.05). These results indicate that ADSCs isolated from ischemic tissue either fail to uptake fatty acids or fail to efficiently convert those fatty acids into triglycerides. Therefore, more robust ADSCs suitable to establish in vitro adipose tissue models can be obtained by harvesting well-vascularized and nonpremedicated adipose tissues.

2.
Nanomaterials (Basel) ; 11(8)2021 Aug 19.
Article En | MEDLINE | ID: mdl-34443944

The design and development of multifunctional nanoparticles have attracted great interest in biomedical research. This study aims to prepare pH-responsive melanin-like nanoparticles for T1-weighted magnetic resonance imaging (MRI) and photothermal therapy. The new multifunctional nanoparticles (amino-Fe-PDANPs) are synthesized by copolymerization of dopamine and its derivative amino-N-[2-(diethylamino) ethyl]-3,4-dihydroxy-benzenepropanamide (N-Dopa) at room temperature. The size of nanoparticles can be controlled by NaOH concentration. The incorporation of N-Dopa is characterized by NMR and FT-IR. From transmission electron microscopy (TEM), the nanoparticles exhibit excellent dispersion stability in water and are spherical in shape. The MRI measurement has demonstrated that amino-Fe-PDANPs have a significant signal enhancement in responding to the acidic solution. Confirmed by the photothermal study, the nanoparticles exhibit a high photothermal conversion efficiency. The melanin-like multifunctional nanoparticles integrate both diagnosis and therapeutic functionalities, indicating the potential for theranostic application.

3.
Am J Physiol Heart Circ Physiol ; 315(3): H522-H530, 2018 09 01.
Article En | MEDLINE | ID: mdl-29775405

The generation of big data has enabled systems-level dissections into the mechanisms of cardiovascular pathology. Integration of genetic, proteomic, and pathophysiological variables across platforms and laboratories fosters discoveries through multidisciplinary investigations and minimizes unnecessary redundancy in research efforts. The Mouse Heart Attack Research Tool (mHART) consolidates a large data set of over 10 yr of experiments from a single laboratory for cardiovascular investigators to generate novel hypotheses and identify new predictive markers of progressive left ventricular remodeling after myocardial infarction (MI) in mice. We designed the mHART REDCap database using our own data to integrate cardiovascular community participation. We generated physiological, biochemical, cellular, and proteomic outputs from plasma and left ventricles obtained from post-MI and no-MI (naïve) control groups. We included both male and female mice ranging in age from 3 to 36 mo old. After variable collection, data underwent quality assessment for data curation (e.g., eliminate technical errors, check for completeness, remove duplicates, and define terms). Currently, mHART 1.0 contains >888,000 data points and includes results from >2,100 unique mice. Database performance was tested, and an example is provided to illustrate database utility. This report explains how the first version of the mHART database was established and provides researchers with a standard framework to aid in the integration of their data into our database or in the development of a similar database. NEW & NOTEWORTHY The Mouse Heart Attack Research Tool combines >888,000 cardiovascular data points from >2,100 mice. We provide this large data set as a REDCap database to generate novel hypotheses and identify new predictive markers of adverse left ventricular remodeling following myocardial infarction in mice and provide examples of use. The Mouse Heart Attack Research Tool is the first database of this size that integrates data sets across platforms that include genomic, proteomic, histological, and physiological data.


Databases, Factual , Myocardial Infarction/pathology , Software , Animals , Female , Male , Mice , Myocardial Infarction/physiopathology , Ventricular Remodeling
4.
Metabolism ; 83: 256-270, 2018 06.
Article En | MEDLINE | ID: mdl-29526538

BACKGROUND: AMP-activated Protein Kinase (AMPK) is a stress-activated kinase that protects against cardiomyocyte injury during ischemia and reperfusion. c-Jun N-terminal kinase (JNK), a mitogen activated protein kinase, is activated by ischemia and reperfusion. NF-κB is an important transcription factor involved in ischemia and reperfusion injury. METHODS AND RESULTS: The intrinsic activation of AMPK attenuates the inflammation which occurred during ischemia/reperfusion through the modulation of the JNK mediated NF-κB signaling pathway. Rat cardiac myoblast H9c2 cells were subjected to hypoxia and/or reoxygenation to investigate the signal transduction that occurred during myocardial ischemia/reperfusion. Mitochondrial function was measured by the Seahorse XF24 V7 PS system. Hypoxia treatment triggered AMPK activation in H9c2 cells in a time dependent manner. The inhibition of hypoxic AMPK activation through a pharmacological approach (Compound C) or siRNA knockdown of AMPK α catalytic subunits caused dramatic augmentation in JNK activation, inflammatory NF-κB phosphorylation, and apoptosis during hypoxia and reoxygenation. Inhibition of AMPK activation significantly impaired mitochondrial function and increased the generation of reactive oxygen species (ROS) during hypoxia and reoxygenation. In contrast, pharmacological activation of AMPK by metformin significantly inhibited mitochondrial permeability transition pore (mPTP) opening and ROS generation. Moreover, AMPK activation significantly attenuated the JNK-NF-κB signaling cascade and inhibited mRNA and protein levels of pro-inflammatory cytokines, such as TNF-α and IL-6, during hyopoxia/reoxygenation in H9c2 cells. Intriguingly, both pharmacologic inhibition of JNK by JNK-IN-8 and siRNA knockdown of JNK signaling pathway attenuated NF-κB phosphorylation and apoptosis but did not affect AMPK activation in response to hypoxia and reoxygenation. CONCLUSIONS: AMPK activation modulates JNK-NF-κB signaling cascade during hypoxia and reoxygenation stress conditions. Cardiac AMPK activation plays a critical role in maintaining mitochondrial function and inhibiting the inflammatory response caused by ischemic insults.


Adenylate Kinase/metabolism , Hypoxia/metabolism , Inflammation/metabolism , Inflammation/prevention & control , MAP Kinase Signaling System/drug effects , NF-kappa B/metabolism , Oxygen/pharmacology , Animals , Cell Hypoxia/physiology , Cells, Cultured , Hypoxia/prevention & control , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Rats , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
5.
Cardiovasc Res ; 114(6): 805-821, 2018 05 01.
Article En | MEDLINE | ID: mdl-29409011

Aims: A longevity gene, Sirtuin 1 (SIRT1) and energy sensor AMP-activated protein kinase (AMPK) have common activators such as caloric restriction, oxidative stress, and exercise. The objective of this study is to characterize the role of cardiomyocyte SIRT1 in age-related impaired ischemic AMPK activation and increased susceptibility to ischemic insults. Methods and results: Mice were subjected to ligation of left anterior descending coronary artery for in vivo ischemic models. The glucose and fatty acid oxidation were measured in a working heart perfusion system. The cardiac functions by echocardiography show no difference in young wild-type C57BL/6 J (WT, 4-6 months), aged WT C57BL/6 J (24-26 months), and young inducible cardiomyocyte-specific SIRT1 knockout (icSIRT1 KO) (4-6 months) mice under physiological conditions. However, after 45 mins ischaemia and 24-h reperfusion, the ejection fraction of aged WT and icSIRT1 KO mice was impaired. The aged WT and icSIRT1 KO hearts vs. young WT hearts also show an impaired post-ischemic contractile function in a Langendorff perfusion system. The infarct size of aged WT and icSIRT1 KO hearts was larger than that of young WT hearts. The immunoblotting data demonstrated that aged WT and icSIRT1 KO hearts vs. young WT hearts had impaired phosphorylation of AMPK and downstream acetyl-CoA carboxylase during ischaemia. Intriguingly, AMPK upstream LKB1 is hyper-acetylated in both aged WT and icSIRT1 KO hearts; this could blunt activation of LKB1, leading to an impaired AMPK activation. The working heart perfusion results demonstrated that SIRT1 deficiency significantly impaired substrate metabolism in the hearts; fatty acid oxidation is augmented and glucose oxidation is blunted during ischaemia and reperfusion. Adeno-associated virus (AAV9)-Sirt1 was delivered into the aged hearts via a coronary delivery approach, which significantly rescued the protein level of SIRT1 and the ischemic tolerance of aged hearts. Furthermore, AMPK agonist can rescue the tolerance of aged heart and icSIRT1 KO heart to ischemic insults. Conclusions: Cardiac SIRT1 mediates AMPK activation via LKB1 deacetylation, and AMPK modulates SIRT1 activity via regulation of NAD+ level during ischaemia. SIRT1 and AMPK agonists have therapeutic potential for treatment of aging-related ischemic heart disease.


Myocardial Infarction/enzymology , Myocardial Reperfusion Injury/enzymology , Myocytes, Cardiac/enzymology , Sirtuin 1/deficiency , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Acetyl-CoA Carboxylase/metabolism , Animals , Disease Models, Animal , Energy Metabolism , Enzyme Activation , Fatty Acids/metabolism , Genetic Predisposition to Disease , Glucose/metabolism , Isolated Heart Preparation , Mice, Inbred C57BL , Mice, Knockout , Mitochondria, Heart/enzymology , Myocardial Contraction , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocardial Infarction/physiopathology , Myocardial Reperfusion Injury/genetics , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/pathology , Phenotype , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Sirtuin 1/genetics , Ventricular Function, Left
6.
J Mol Cell Cardiol ; 115: 170-178, 2018 02.
Article En | MEDLINE | ID: mdl-29325933

We have revealed that a novel stress-inducible protein, Sestrin2, declines in the heart with aging. Moreover, there is an interaction between Sestrin2 and energy sensor AMPK in the heart in response to ischemic stress. The objective of this study is to determine whether Sestrin2-AMPK complex modulates PGC-1α in the heart and protects the heart from ischemic insults. In order to characterize the role of cardiac Sestrin2-AMPK signaling cascade in aging, C57BL/6 wild type young mice (3-4months), aged mice (24-26months) and young Sestrin2 KO mice were subjected to left anterior descending coronary artery occlusion for in vivo regional ischemia. Intriguingly, ischemic AMPK activation was blunted in aged WT and young Sesn2 KO hearts as compared with young WT hearts. In addition, the AMPK downstream PGC-1α was down-regulated in the aged and Sestrin2 KO hearts during post myocardial infarction. To further determine the regulation of AMPK on mitochondrial functions in aging, the downstream of mitochondrial biogenesis PGC-1α transcriptional factor were measured. The results demonstrated that the PGC-1α downstream effectors TFAM and UCP2 were impaired in the aged and Sestrin2 KO post-MI hearts as compared to the young hearts. While the apoptotic flux markers such as AIF, Bax/Bcl-2 were up-regulated in both aged and Sestrin2 KO hearts versus young hearts. Furthermore, both Sestrin2 KO and aged hearts demonstrated more susceptible to ischemic insults as compared to young hearts. Additionally, the adeno-associated virus (AAV9)-Sestrin2 delivered to the aged hearts via a coronary delivery approach significantly rescued the ischemic tolerance of aged hearts. Taken together, the decreased Sestrin2 levels in aging lead to an impaired AMPK/PGC-1α signaling cascade and an increased sensitivity to ischemic insults.


AMP-Activated Protein Kinases/metabolism , Aging/pathology , Myocardial Infarction/metabolism , Nuclear Proteins/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Signal Transduction , Animals , Apoptosis , Mice, Inbred C57BL , Mice, Knockout , Myocardium/enzymology , Myocardium/pathology , Nuclear Proteins/deficiency , Peroxidases
7.
Biochem Biophys Res Commun ; 495(4): 2584-2594, 2018 01 22.
Article En | MEDLINE | ID: mdl-29287725

We found that the anticoagulant plasma protease, activated protein C (APC), stimulates the energy sensor kinase, AMPK, in the stressed heart by activating protease-activated receptor 1 (PAR1) on cardiomyocytes. Wild-type (WT) and AMPK-kinase dead (KD) transgenic mice were subjected to transverse aortic constriction (TAC) surgery. The results demonstrated that while no phenotypic differences can be observed between WT and AMPK-KD mice under normal physiological conditions, AMPK-KD mice exhibit significantly larger hearts after 4 weeks of TAC surgery. Analysis by echocardiography suggested that the impairment in the cardiac function of AMPK-KD hearts is significantly greater than that of WT hearts. Immunohistochemical staining revealed increased macrophage infiltration and ROS generation in AMPK-KD hearts after 4 weeks of TAC surgery. Immunoblotting results demonstrated that the redox markers, pShc66, 4-hydroxynonenal and ERK, were all up-regulated at a higher extent in AMPK-KD hearts after 4 weeks of TAC surgery. Administration of APC-WT and the signaling selective APC-2Cys mutant, but not the anticoagulant selective APC-E170A mutant, significantly attenuated pressure overload-induced hypertrophy and fibrosis. Macrophage infiltration and pShc66 activation caused by pressure overload were also inhibited by APC and APC-2Cys but not by APC-E170A. Therefore, the cardiac AMPK protects against pressure overload-induced hypertrophy and the signaling selective APC-2Cys may have therapeutic potential for treating hypertension-related hypertrophy without increasing the risk of bleeding.


Blood Pressure , Cardiomegaly/physiopathology , Hypertension/physiopathology , Protein C/metabolism , Protein Kinases/metabolism , Signal Transduction , AMP-Activated Protein Kinase Kinases , Activated Protein C Resistance , Animals , Cardiomegaly/pathology , Hypertension/pathology , Mice , Mice, Inbred C57BL
9.
Toxicol Sci ; 160(2): 341-350, 2017 Dec 01.
Article En | MEDLINE | ID: mdl-28973678

We aim to investigate the cardioprotective effects of L-carnitine (LC) on cardiac function during ischemia and reperfusion (I/R) and contractile function of single cardiomyocyte. C57BL/6 J mice were randomly assigned to 5 groups: sham group; vehicle group, LC preconditioning group, LC preconditioning + LY294002 (a PI3K/Akt signaling pathway inhibitor) group (LC + LY), and LY294002 group (LY). The sham group was exposed to the open heart operation but not I/R, the other groups received 45 min ischemia/48 h reperfusion. At the end of reperfusion, echocardiography was performed on every mouse. In order to determine whether LC's cardioprotection could act directly at the level of cardiomyocytes, we also tested its effects on isolated cardiomyocytes under hypoxia condition. The expressions of p-PI3K, PI3K, Akt, p-Akt, Bax and Bcl-2 proteins were detected by immunoblotting. The results showed that LC preconditioning remarkably improved cardiac function after I/R, but the cardioprotective effect of LC was significantly weakened after the application of LY294002. We also found that LC could directly improve the contractile function of cardiomyocytes under hypoxia condition. The immunoblotting results showed that LC administration restrained myocardial apoptosis as evidenced by decreasing the level of Bax expression, increasing the levels of phosphorylation of Akt, PI3K, and Bcl-2 protein expression, but these were blocked by LYC94002. Thus, the cardioprotective effects of LC against myocardial ischemic damage and its effect on single cardiomyocyte under hypoxia may be associated with the PI3K/Akt signaling pathway.


Cardiovascular Agents/pharmacology , Carnitine/pharmacology , Myocardial Contraction/drug effects , Myocardial Reperfusion Injury/prevention & control , Myocytes, Cardiac/drug effects , Proto-Oncogene Proteins c-akt/metabolism , ST Elevation Myocardial Infarction/prevention & control , Signal Transduction/drug effects , Ventricular Function, Left/drug effects , Animals , Apoptosis/drug effects , Cell Hypoxia , Cells, Cultured , Cytoprotection , Disease Models, Animal , Mice, Inbred C57BL , Myocardial Reperfusion Injury/enzymology , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/enzymology , Myocytes, Cardiac/pathology , Phosphatidylinositol 3-Kinase/metabolism , Phosphorylation , Proto-Oncogene Proteins c-bcl-2/metabolism , ST Elevation Myocardial Infarction/enzymology , ST Elevation Myocardial Infarction/pathology , ST Elevation Myocardial Infarction/physiopathology , Time Factors , bcl-2-Associated X Protein/metabolism
10.
Biochem Biophys Res Commun ; 494(3-4): 556-568, 2017 12 16.
Article En | MEDLINE | ID: mdl-29032181

Ginsenosides have been studied extensively in recent years due to their therapeutic effects in cardiovascular diseases. While most studies examined the different ginsenosides individually, few studies compare the therapeutic effects among the different types. This study examined how effective protopanaxadiol, protopanaxatriol ginsenosides Rh2, Rg3, Rh1, and Rg2 of the ginsenoside family are in protecting H9c2 cardiomyocytes from damage caused by hypoxia/reoxygenation. In the current study, a model of myocardial ischemia and reperfusion was induced in H9c2 cardiomyocytes by oxygen deprivation via a hypoxia chamber followed by reoxygenation. Our data show that structures similar to that of protopanaxadiol, which lacked the hydroxide group at C6, were more effective in lowering apoptosis than structures similar to protopanaxatriol with a hydroxide group at C6. As the compounds increased in size and complexity, the cardioprotective effects diminished. In addition, the S enantiomer proved to be more effective in cardioprotection than the R enantiomer. Furthermore, the immunoblotting analysis demonstrated that ginsenosides activate AMPK but suppress JNK signaling pathways during hypoxia/reoxygenation. Thus, ginsenosides treatment attenuated hypoxia/reoxygenation-induced apoptosis via modulating cardioprotective AMPK and inflammation-related JNK signaling pathways.


Apoptosis/physiology , Ginsenosides/administration & dosage , Ginsenosides/chemistry , Myocytes, Cardiac/physiology , Oxygen/metabolism , Animals , Apoptosis/drug effects , Cardiotonic Agents/administration & dosage , Cardiotonic Agents/chemistry , Cell Hypoxia/drug effects , Cell Hypoxia/physiology , Cell Line , Dose-Response Relationship, Drug , Myocytes, Cardiac/drug effects , Rats , Structure-Activity Relationship
11.
JCI Insight ; 2(18)2017 09 21.
Article En | MEDLINE | ID: mdl-28931761

Chronic inflammatory diseases, such as periodontal disease, associate with adverse wound healing in response to myocardial infarction (MI). The goal of this study was to elucidate the molecular basis for impaired cardiac wound healing in the setting of periodontal-induced chronic inflammation. Causal network analysis of 168 inflammatory and extracellular matrix genes revealed that chronic inflammation induced by a subseptic dose of Porphyromonas gingivalis lipopolysaccharide (LPS) exacerbated infarct expression of the proinflammatory cytokine Ccl12. Ccl12 prevented initiation of the reparative response by prolonging inflammation and inhibiting fibroblast conversion to myofibroblasts, resulting in diminished scar formation. Macrophage secretion of Ccl12 directly impaired fibronectin and collagen deposition and indirectly stimulated collagen degradation through upregulation of matrix metalloproteinase-2. In post-MI patients, circulating LPS levels strongly associated with the Ccl12 homologue monocyte chemotactic protein 1 (MCP-1). Patients with LPS levels ≥ 1 endotoxin units (EU)/ml (subseptic endotoxemia) at the time of hospitalization had increased end diastolic and systolic dimensions compared with post-MI patients with < 1 EU/ml, indicating that low yet pathological concentrations of circulating LPS adversely impact post-MI left ventricle (LV) remodeling by increasing MCP-1. Our study provides the first evidence to our knowledge that chronic inflammation inhibits reparative fibroblast activation and generates an unfavorable cardiac-healing environment through Ccl12-dependent mechanisms.


Fibroblasts/metabolism , Macrophages/metabolism , Monocyte Chemoattractant Proteins/metabolism , Myocardium/metabolism , Periodontitis/metabolism , Wound Healing , Aged , Animals , Chronic Disease , Female , Humans , Lipopolysaccharides/administration & dosage , Male , Mice , Middle Aged , Myocardium/pathology , Periodontitis/chemically induced , Periodontitis/pathology , Systems Biology
12.
Biochem Biophys Res Commun ; 492(3): 520-527, 2017 10 21.
Article En | MEDLINE | ID: mdl-28807827

AMP-activated protein kinase (AMPK), an enzyme that plays a role in cellular energy homeostasis, modulates myocardial signaling in the heart. Myocardial dysfunction is a common complication of sepsis. Autophagy is involved in the aging related cardiac dysfunction. However, the role of AMPK in sepsis-induced cardiotoxicity has yet to be clarified, especially in aging. In this study, we explored the role of AMPK in lipopolysaccharide (LPS)-induced myocardial dysfunction and elucidated the potential mechanisms of AMPK/mTOR pathway regulating autophagy in young and aged mice. We harvested cardiac tissues by intraperitoneal injection of LPS treatment. The results by echocardiography, pathology, contractile and intracellular Ca2+ property as well as western blot analysis revealed that LPS induced remarkable cardiac dysfunction and cardiotoxicity in mice hearts and cardiomyocytes, which were more seriously in the aged mice. Western blot analysis indicated that the underlying mechanisms included inhibition autophagy mediated by AMPK/mTOR activation. LPS overtly promoted the expression of AMPK upstream regulator PP2A and PP2Cα. Pharmacological activation of AMPK improved cardiac function and upregulated cardiac autophagy induced by LPS in the aged mice. Collectively, our findings suggest that upregulation of autophagy by administration of AMPK could attenuate LPS-induced cardiotoxicity, which enhances our knowledge to explore new drugs and strategies for combating cardiac dysfunction induced by sepsis.


AMP-Activated Protein Kinases/metabolism , Autophagy , Endotoxemia/metabolism , Myocardium/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism , Animals , Echocardiography , Male , Mice , Mice, Inbred C57BL
13.
FASEB J ; 31(9): 4153-4167, 2017 09.
Article En | MEDLINE | ID: mdl-28592638

A novel stress-inducible protein, Sestrin2 (Sesn2), declines in the heart with aging. AMPK has emerged as a pertinent stress-activated kinase that has been shown to have cardioprotective capabilities against myocardial ischemic injury. We identified the interaction between Sesn2 and AMPK in the ischemic heart. To determine whether ischemic AMPK activation-modulated by the Sesn2-AMPK complex in the heart-is impaired in aging that sensitizes the heart to ischemic insults, young C57BL/6 mice (age 3-4 mo), middle-aged mice (age 10-12 mo), and aged mice (age 24-26 mo) were subjected to left anterior descending coronary artery occlusion for in vivo regional ischemia. The ex vivo working heart system was used for measuring substrate metabolism. The protein level of Sesn2 in hearts was gradually decreased with aging. Of interest, ischemic AMPK activation was blunted in aged hearts compared with young hearts (P < 0.05); the AMPK downstream glucose uptake and the rate of glucose oxidation were significantly impaired in aged hearts during ischemia and reperfusion (P < 0.05 vs. young hearts). Myocardial infarction size was larger in aged hearts (P < 0.05 vs. young hearts). Immunoprecipitation with Sesn2 Ab revealed that cardiac Sesn2 forms a complex with AMPK and upstream liver kinase B1 (LKB1) during ischemia. Of interest, the binding affinity between Sesn2 and AMPK upstream LKB1 is impaired in aged hearts during ischemia (P < 0.05 vs. young hearts). Furthermore, Sesn2-knockout hearts demonstrate a cardiac phenotype and response to ischemic stress that is similar to wild-type aged hearts (i.e., impaired ischemic AMPK activation and higher sensitivity to ischemia- and reperfusion- induced injury). Adeno-associated virus-Sesn2 was delivered to aged hearts via a coronary delivery approach and significantly rescued the protein level of Sesn2 and the ischemic tolerance of aged hearts; therefore, Sesn2 is a scaffold protein that mediates AMPK activation in the ischemic myocardium via an interaction with AMPK upstream LKB1. Decreased Sesn2 levels in aging lead to a blunted ischemic AMPK activation, alterations in substrate metabolism, and an increased sensitivity to ischemic insults-Quan, N., Sun, W., Wang, L., Chen, X., Bogan, J. S., Zhou, X., Cates, C., Liu, Q., Zheng, Y., Li J. Sestrin2 prevents age-related intolerance to ischemia and reperfusion injury by modulating substrate metabolism.


Aging/physiology , Nuclear Proteins/metabolism , Reperfusion Injury/metabolism , AMP-Activated Protein Kinases/genetics , AMP-Activated Protein Kinases/metabolism , Animals , Gene Expression Regulation/physiology , Glucose Transporter Type 4/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitophagy , Myocardial Ischemia/metabolism , Myocardium/metabolism , Nuclear Proteins/genetics , Peroxidases
14.
Biochem Pharmacol ; 108: 47-57, 2016 May 15.
Article En | MEDLINE | ID: mdl-27015742

AMP-activated protein kinase (AMPK) signaling pathway plays a pivotal role in intracellular adaptation to energy stress during myocardial ischemia. Notch1 signaling in the adult myocardium is also activated in response to ischemic stress. However, the relationship between Notch1 and AMPK signaling pathways during ischemia remains unclear. We hypothesize that Notch1 as an adaptive signaling pathway protects the heart from ischemic injury via modulating the cardioprotective AMPK signaling pathway. C57BL/6J mice were subjected to an in vivo ligation of left anterior descending coronary artery and the hearts from C57BL/6J mice were subjected to an ex vivo globe ischemia and reperfusion in the Langendorff perfusion system. The Notch1 signaling was activated during myocardial ischemia. A Notch1 γ-secretase inhibitor, dibenzazepine (DBZ), was intraperitoneally injected into mice to inhibit Notch1 signaling pathway by ischemia. The inhibition of Notch1 signaling by DBZ significantly augmented cardiac dysfunctions caused by myocardial infarction. Intriguingly, DBZ treatment also significantly blunted the activation of AMPK signaling pathway. The immunoprecipitation experiments demonstrated that an interaction between Notch1 and liver kinase beta1 (LKB1) modulated AMPK activation during myocardial ischemia. Furthermore, a ligand of Notch1 Jagged1 can significantly reduce cardiac damage caused by ischemia via activation of AMPK signaling pathway and modulation of glucose oxidation and fatty acid oxidation during ischemia and reperfusion. But Jagged1 did not have any cardioprotections on AMPK kinase dead transgenic hearts. Taken together, the results indicate that the cardioprotective effect of Notch1 against ischemic damage is mediated by AMPK signaling via an interaction with upstream LKB1.


AMP-Activated Protein Kinases/metabolism , Myocardial Infarction/metabolism , Protein Serine-Threonine Kinases/metabolism , Receptor, Notch1/metabolism , AMP-Activated Protein Kinase Kinases , Animals , Energy Metabolism , Male , Mice, Inbred C57BL , Mice, Transgenic , Myocardial Infarction/pathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/pathology , Myocardium/metabolism , Myocardium/pathology , Protein Kinases/genetics , Receptor, Notch1/antagonists & inhibitors , Signal Transduction
15.
Cardiovasc Res ; 110(1): 51-61, 2016 May 01.
Article En | MEDLINE | ID: mdl-26825554

AIMS: Although macrophage phenotypes have been well studied in the myocardial infarction (MI) setting, this study investigated temporal neutrophil polarization and activation mechanisms. METHODS AND RESULTS: Neutrophils isolated from the infarcted left ventricle (LV) of mice showed high expression of proinflammatory markers at Day 1 and anti-inflammatory markers at Days 5 and 7 post-MI, indicating distinct neutrophil phenotypes along the post-MI time continuum. Flow cytometry analysis revealed that although proinflammatory N1 neutrophils were always predominant (>80% of total neutrophils at each time point), the percentage of N2 neutrophils increased post-MI from 2.4 ± 0.6% at Day 1 to 18.1 ± 3.0% at Day 7. In vitro, peripheral blood neutrophils were polarized to proinflammatory N1 by lipopolysaccharide and interferon-γ or anti-inflammatory N2 by interleukin-4, indicating high plasticity potential. The in vivo post-MI relevant LV damage-associated molecular patterns (DAMPs) polarized neutrophils to a proinflammatory N1 phenotype by activating toll-like receptor-4. Transforming growth factor-ß1 inhibited proinflammatory production in neutrophils. N1 neutrophils positively correlated with infarct wall thinning at Day 7 post-MI, possibly due to high production of matrix metalloproteinases-12 and -25. CONCLUSION: This study is the first to identify the existence of N1 and N2 neutrophils in the infarct region and reveals that N1 polarization could be mediated by DAMPs.


Macrophages/metabolism , Myocardial Infarction/metabolism , Neutrophils/metabolism , Ventricular Remodeling/physiology , Animals , Cell Polarity , Disease Models, Animal , Inflammation/metabolism , Interferon-gamma/metabolism , Interleukin-4/metabolism , Male , Mice, Inbred C57BL , Myocardial Infarction/pathology
16.
Proteomics Clin Appl ; 10(1): 92-107, 2016 Jan.
Article En | MEDLINE | ID: mdl-26415707

PURPOSE: Matrix metalloproteinases (MMPs) collectively degrade all extracellular matrix (ECM) proteins. Of the MMPs, MMP-9 has the strongest link to the development of cardiac dysfunction. Aging associates with increased MMP-9 expression in the left ventricle (LV) and reduced cardiac function. We investigated the effect of MMP-9 deletion on the cardiac ECM in aged animals. EXPERIMENTAL DESIGN: We used male and female middle-aged (10- to16-month old) and old (20- to 24-month old) wild-type (WT) and MMP-9 null mice (n = 6/genotype/age). LVs were decellularized to remove highly abundant mitochondrial proteins that could mask identification of relative lower abundant components, analyzed by shotgun proteomics, and proteins of interest validated by immunoblot. RESULTS: Elastin microfibril interface-located protein 1 (EMILIN-1) decreased with age in WT (p < 0.05), but not in MMP-9 null. EMILIN-1 promotes integrin-dependent cell adhesion and EMILIN-1 deficiency has been associated with vascular stiffening. Talin-2, a cytoskeletal protein, was elevated with age in WT (p < 0.05), and MMP-9 deficiency blunted this increase. Talin-2 is highly expressed in adult cardiac myocytes, transduces mechanical force to the ECM, and is activated by increases in substrate stiffness. Our results suggest that MMP-9 deletion may reduce age-related myocardial stiffness, which may explain improved cardiac function in MMP-9 null animals. CONCLUSIONS: We identified age-related changes in the cardiac proteome that are MMP-9 dependent, suggesting MMP-9 as a possible therapeutic target for the aging patient.


Aging/metabolism , Matrix Metalloproteinase 9/metabolism , Muscle Proteins/metabolism , Myocardial Contraction , Myocardium/metabolism , Aging/genetics , Aging/pathology , Animals , Female , Male , Matrix Metalloproteinase 9/genetics , Membrane Glycoproteins/genetics , Membrane Glycoproteins/metabolism , Mice , Mice, Mutant Strains , Muscle Proteins/genetics , Myocardium/pathology
17.
Circ Cardiovasc Genet ; 9(1): 14-25, 2016 Feb.
Article En | MEDLINE | ID: mdl-26578544

BACKGROUND: After myocardial infarction, the left ventricle undergoes a wound healing response that includes the robust infiltration of neutrophils and macrophages to facilitate removal of dead myocytes as well as turnover of the extracellular matrix. Matrix metalloproteinase (MMP)-9 is a key enzyme that regulates post-myocardial infarction left ventricular remodeling. METHODS AND RESULTS: Infarct regions from wild-type and MMP-9 null mice (n=8 per group) analyzed by glycoproteomics showed that of 541 N-glycosylated proteins quantified, 45 proteins were at least 2-fold upregulated or downregulated with MMP-9 deletion (all P<0.05). Cartilage intermediate layer protein and platelet glycoprotein 4 (CD36) were identified as having the highest fold increase in MMP-9 null mice. By immunoblotting, CD36 but not cartilage intermediate layer protein decreased steadily during the time course post-myocardial infarction, which identified CD36 as a candidate MMP-9 substrate. MMP-9 was confirmed in vitro and in vivo to proteolytically degrade CD36. In vitro stimulation of day 7 post-myocardial infarction macrophages with MMP-9 or a CD36-blocking peptide reduced phagocytic capacity. Dual immunofluorescence revealed concomitant accumulation of apoptotic neutrophils in the MMP-9 null group compared with wild-type group. In vitro stimulation of isolated neutrophils with MMP-9 decreased neutrophil apoptosis, indicated by reduced caspase-9 expression. CONCLUSIONS: Our data reveal a new cell-signaling role for MMP-9 through CD36 degradation to regulate macrophage phagocytosis and neutrophil apoptosis.


Apoptosis , CD36 Antigens/metabolism , Matrix Metalloproteinase 9/biosynthesis , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Neutrophils/metabolism , Proteolysis , Animals , CD36 Antigens/genetics , Female , Gene Expression Regulation, Enzymologic , Heart Ventricles/metabolism , Heart Ventricles/pathology , Male , Matrix Metalloproteinase 9/genetics , Mice , Mice, Mutant Strains , Myocardial Infarction/genetics , Myocardial Infarction/pathology , Myocytes, Cardiac/pathology , Signal Transduction
18.
J Mol Cell Cardiol ; 85: 229-39, 2015 Aug.
Article En | MEDLINE | ID: mdl-26080361

Matrix metalloproteinase-9 (MMP-9) deletion attenuates collagen accumulation and dilation of the left ventricle (LV) post-myocardial infarction (MI); however the biomechanical mechanisms underlying the improved outcome are poorly understood. The aim of this study was to determine the mechanisms whereby MMP-9 deletion alters collagen network composition and assembly in the LV post-MI to modulate the mechanical properties of myocardial scar tissue. Adult C57BL/6J wild-type (WT; n=88) and MMP-9 null (MMP-9(-/-); n=92) mice of both sexes underwent permanent coronary artery ligation and were compared to day 0 controls (n=42). At day 7 post-MI, WT LVs displayed a 3-fold increase in end-diastolic volume, while MMP-9(-/-) showed only a 2-fold increase (p<0.05). Biaxial mechanical testing revealed that MMP-9(-/-) infarcts were stiffer than WT infarcts, as indicated by a 1.3-fold reduction in predicted in vivo circumferential stretch (p<0.05). Paradoxically, MMP-9(-/-) infarcts had a 1.8-fold reduction in collagen deposition (p<0.05). This apparent contradiction was explained by a 3.1-fold increase in lysyl oxidase (p<0.05) in MMP-9(-/-) infarcts, indicating that MMP-9 deletion increased collagen cross-linking activity. Furthermore, MMP-9 deletion led to a 3.0-fold increase in bone morphogenetic protein-1, the metalloproteinase that cleaves pro-collagen and pro-lysyl oxidase (p<0.05) and reduced fibronectin fragmentation by 49% (p<0.05) to enhance lysyl oxidase activity. We conclude that MMP-9 deletion increases infarct stiffness and prevents LV dilation by reducing collagen degradation and facilitating collagen assembly and cross-linking through preservation of the fibronectin network and activation of lysyl oxidase.


Collagen/metabolism , Heart Ventricles/pathology , Myocardial Infarction/metabolism , Ventricular Remodeling , Animals , Cardiac Volume , Female , Heart Ventricles/metabolism , Male , Matrix Metalloproteinase 9/genetics , Mice, Inbred C57BL , Mice, Knockout , Myocardium/metabolism , Myocardium/pathology , Ventricular Function, Left
19.
Antioxid Redox Signal ; 21(14): 1974-85, 2014 Nov 10.
Article En | MEDLINE | ID: mdl-24382150

AIM: To evaluate the role of matrix metalloproteinase (MMP)-9 deletion on citrate synthase (CS) activity postmyocardial infarction (MI). RESULTS: We fractionated left ventricle (LV) samples using a differential solubility-based approach. The insoluble protein fraction was analyzed by mass spectrometry, and we identified CS as a potential intracellular substrate of MMP-9 in the MI setting. CS protein levels increased in the insoluble fraction at day 1 post-MI in both genotypes (p<0.05) but not in the noninfarcted remote region. The CS activity decreased in the infarcted tissue of wild-type (WT) mice at day 1 post-MI (p<0.05), but this was not observed in the MMP-9 null mice, suggesting that MMP-9 deletion helps to maintain the mitochondrial activity post-MI. Additionally, inflammatory gene transcription was increased post-MI in the WT mice and attenuated in the MMP-9 null mice. MMP-9 cleaved CS in vitro, generating an ∼20 kDa fragment. INNOVATION: By applying a sample fractionation and proteomics approach, we were able to identify a novel MMP-9-related altered mitochondrial metabolic activity early post-MI. CONCLUSION: Our data suggest that MMP-9 deletion improves mitochondrial function post-MI.


Citrate (si)-Synthase/metabolism , Heart Ventricles/metabolism , Matrix Metalloproteinase 9/genetics , Myocardial Infarction/metabolism , Animals , Heart Ventricles/pathology , Humans , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Knockout , Mitochondria/metabolism , Mitochondria/pathology , Myocardial Infarction/pathology
...