Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 134
1.
Article En | MEDLINE | ID: mdl-38457608

OBJECTIVE: Individuals positive for anti-cyclic-peptide-antibodies (anti-CCP) and musculoskeletal complaints (MSK-C) are at risk for developing rheumatoid arthritis (RA). In this study we aimed to investigate factors involved in arthritis progression. METHODS: Anti-CCP2-positive individuals with MSK-C referred to a rheumatologist were recruited. Individuals lacked arthritis at clinical and ultrasound examination and were followed for ≥three years or until clinical arthritis diagnosis. Blood samples from inclusion were analyzed for; nine anti-citrullinated-protein-antibody (ACPA) reactivities (citrullinated α-1-enolase, fibrinogen, filaggrin, histone, vimentin and tenascin peptides); 92 inflammation-associated proteins; and HLA-shared epitope alleles. Cox regression was applied to the data to identify independent predictors in a model. RESULTS: 267 individuals were included with median follow up of 49 months (IQR: 22-60). 101 (38%) developed arthritis after median 14 months (IQR: 6-27). The analysis identified that presence of at least one ACPA reactivity (HR 8.0, 95% CI 2.9-22), ultrasound detected tenosynovitis (HR 3.4, 95% CI 2.0-6.0), IL6 levels (HR 1.5, 95% CI 1.2-1.8) and IL15-Rα levels (HR 0.6, 95% CI 0.4-0.9) are significant independent predictors for arthritis progression in a prediction model (Harrell's C 0.76 [SE 0.02], AUC 0.82 [95% CI 0.76-0.89], cross-validated AUC 0.70 [95% CI 0.56-0.85]). CONCLUSION: We propose a high-Risk-RA phase characterized by presence of ACPA reactivity, tenosynovitis, IL6, and IL15-Rα and suggest that these factors need to be further investigated for their biological effects and clinical values, to identify individuals at particular low risk and high risk for arthritis progression.

2.
ACR Open Rheumatol ; 5(9): 474-480, 2023 Sep.
Article En | MEDLINE | ID: mdl-37551033

OBJECTIVE: To investigate whether digital activity fluorescence optical imaging (FOI) patterns of inflammation can identify distinct rheumatoid arthritis (RA) phenotypes. METHODS: The hands of newly diagnosed patients with RA were evaluated by clinical examination, musculoskeletal ultrasound, and FOI. Inflammation on FOI was defined when capillary leakage and/or fluorophore perfusion was present. The FOI composite image was quantified into a digital disease activity (DACT) score, using novel computerized algorithms. Unsupervised clustering on FOI inflammatory patterns was used to identify subgroups of patients relative to anticyclic citrullinated peptides (ACPA) and/or rheumatoid factor (RF). RESULTS: Of 1326 examined hand joints in 39 patients with RA (72% female; 56% ever-smokers; 54% RF positive and 69% ACPA positive), 400 (30%) showed inflammation by FOI, and 95% (37 of 39) of patients had DACT-FOI scores greater than 1. Unsupervised analysis on FOI patterns revealed two patient clusters, cluster 1 (n = 29) and cluster 2 (n = 10). The proportion of seropositive patients was significantly higher in cluster 1 versus cluster 2 (90%, 26 of 29 vs. 30%, 3 of 10; P < 0.01), whereas C-reactive-protein levels (minimum-maximum) were significantly higher in cluster 2 (20 mg/l [1-102]) versus cluster 1 (2 mg/l [0-119]; P = 0.01). A wider variety and proportion of inflamed joints emerged for patients with RA in cluster 2 versus cluster 1, in which inflammation was more concentrated around the wrists and the right metacarpophalangeal 2 (MCP2), bilateral MCP3, and, to a lesser degree, left MCP2 and proximal interphalangeal joint and tendon regions. Cluster 1 displayed lower mean (±SD) DACT scores compared with cluster 2 (3.6 ± 2.1 vs. 5.4 ± 2.1; P = 0.03). CONCLUSION: FOI-based digital quantification of hand joint inflammation revealed two distinct RA subpopulations with and without ACPA and RF related autoantibodies.

3.
Clin Exp Immunol ; 214(1): 103-119, 2023 12 11.
Article En | MEDLINE | ID: mdl-37367825

IL-17A+ CD8+ T-cells, termed Tc17 cells, have been identified at sites of inflammation in several immune-mediated inflammatory diseases. However, the biological function of human IL-17A+ CD8+ T-cells is not well characterized, likely due in part to the relative scarcity of these cells. Here, we expanded IL-17A+ CD8+ T-cells from healthy donor PBMC or bulk CD8+ T-cell populations using an in vitro polarization protocol. We show that T-cell activation in the presence of IL-1ß and IL-23 significantly increased the frequencies of IL-17A+ CD8+ T-cells, which was not further enhanced by IL-6, IL-2, or anti-IFNγ mAb addition. In vitro-generated IL-17A+ CD8+ T-cells displayed a distinct type-17 profile compared with IL-17A- CD8+ T-cells, as defined by transcriptional signature (IL17A, IL17F, RORC, RORA, MAF, IL23R, CCR6), high surface expression of CCR6 and CD161, and polyfunctional production of IL-17A, IL-17F, IL-22, IFNγ, TNFα, and GM-CSF. A significant proportion of in vitro-induced IL-17A+ CD8+ T-cells expressed TCRVα7.2 and bound MR1 tetramers indicative of MAIT cells, indicating that our protocol expanded both conventional and unconventional IL-17A+ CD8+ T-cells. Using an IL-17A secretion assay, we sorted the in vitro-generated IL-17A+ CD8+ T-cells for functional analysis. Both conventional and unconventional IL-17A+ CD8+ T-cells were able to induce pro-inflammatory IL-6 and IL-8 production by synovial fibroblasts from patients with psoriatic arthritis, which was reduced upon addition of anti-TNFα and anti-IL-17A neutralizing antibodies. Collectively, these data demonstrate that human in vitro-generated IL-17A+ CD8+ T-cells are biologically functional and that their pro-inflammatory function can be targeted, at least in vitro, using existing immunotherapy.


Interleukin-17 , Interleukin-6 , Humans , Interleukin-6/metabolism , Leukocytes, Mononuclear/metabolism , CD8-Positive T-Lymphocytes , Tumor Necrosis Factor-alpha/metabolism , Fibroblasts/metabolism
4.
Biomolecules ; 13(4)2023 03 31.
Article En | MEDLINE | ID: mdl-37189377

BACKGROUND: Why the adaptive immune system turns against citrullinated antigens in rheumatoid arthritis (RA) and whether anti-citrullinated protein antibodies (ACPAs) contribute to pathogenesis are questions that have triggered intense research, but still are not fully answered. Neutrophils may be crucial in this context, both as sources of citrullinated antigens and also as targets of ACPAs. To better understand how ACPAs and neutrophils contribute to RA, we studied the reactivity of a broad spectrum of RA patient-derived ACPA clones to activated or resting neutrophils, and we also compared neutrophil binding using polyclonal ACPAs from different patients. METHODS: Neutrophils were activated by Ca2+ ionophore, PMA, nigericin, zymosan or IL-8, and ACPA binding was studied using flow cytometry and confocal microscopy. The roles of PAD2 and PAD4 were studied using PAD-deficient mice or the PAD4 inhibitor BMS-P5. RESULTS: ACPAs broadly targeted NET-like structures, but did not bind to intact cells or influence NETosis. We observed high clonal diversity in ACPA binding to neutrophil-derived antigens. PAD2 was dispensable, but most ACPA clones required PAD4 for neutrophil binding. Using ACPA preparations from different patients, we observed high patient-to-patient variability in targeting neutrophil-derived antigens and similarly in another cellular effect of ACPAs, the stimulation of osteoclast differentiation. CONCLUSIONS: Neutrophils can be important sources of citrullinated antigens under conditions that lead to PAD4 activation, NETosis and the extrusion of intracellular material. A substantial clonal diversity in targeting neutrophils and a high variability among individuals in neutrophil binding and osteoclast stimulation suggest that ACPAs may influence RA-related symptoms with high patient-to-patient variability.


Anti-Citrullinated Protein Antibodies , Arthritis, Rheumatoid , Mice , Animals , Anti-Citrullinated Protein Antibodies/metabolism , Neutrophils/metabolism , Aminosalicylic Acids , Arthritis, Rheumatoid/metabolism , Clone Cells
5.
Arthritis Rheumatol ; 75(11): 1910-1922, 2023 11.
Article En | MEDLINE | ID: mdl-37192126

OBJECTIVE: The lung is implicated as a site for breach of tolerance prior to onset of seropositive rheumatoid arthritis (RA). To substantiate this, we investigated lung-resident B cells in bronchoalveolar lavage (BAL) samples from untreated early RA patients and anti-citrullinated protein antibody (ACPA)-positive individuals at risk for developing RA. METHODS: Single B cells (n = 7,680) were phenotyped and isolated from BAL samples from individuals at risk of RA (n = 3) and at RA diagnosis (n = 9). The immunoglobulin variable region transcripts were sequenced and selected for expression as monoclonal antibodies (n = 141). Monoclonal ACPAs were tested for reactivity patterns and binding to neutrophils. RESULTS: Using our single-cell approach, we found significantly increased proportions of B lymphocytes in ACPA+ compared to ACPA- individuals. Memory and double-negative B cells were prominent in all subgroups. Upon antibody re-expression, 7 highly mutated citrulline-autoreactive clones originating from different memory B cell subsets were identified, both in individuals at risk of RA and early RA patients. Lung IgG variable gene transcripts from ACPA+ individuals carried frequent mutation-induced N-linked Fab glycosylation sites (P < 0.001), often in the framework 3 of the variable region. Two of the lung ACPAs bound to activated neutrophils, 1 from an individual at risk of RA and 1 from an early RA patient. CONCLUSION: T cell-driven B cell differentiation resulting in local class switching and somatic hypermutation are evident in lungs before as well as in early stages of ACPA+ RA. Our findings add to the notion of lung mucosa being a site for initiation of citrulline autoimmunity preceding seropositive RA.


Arthritis, Rheumatoid , Autoimmunity , Humans , Citrulline , Lung , Immunoglobulin Variable Region/metabolism , Autoantibodies
6.
Front Med (Lausanne) ; 10: 1146353, 2023.
Article En | MEDLINE | ID: mdl-37051216

Background: Methotrexate (MTX) is the first line treatment for rheumatoid arthritis (RA), but failure of satisfying treatment response occurs in a significant proportion of patients. Here we present a longitudinal multi-omics study aimed at detecting molecular and cellular processes in peripheral blood associated with a successful methotrexate treatment of rheumatoid arthritis. Methods: Eighty newly diagnosed patients with RA underwent clinical assessment and donated blood before initiation of MTX, and 3 months into treatment. Flow cytometry was used to describe cell types and presence of activation markers in peripheral blood, the expression of 51 proteins was measured in serum or plasma, and RNA sequencing was performed in peripheral blood mononuclear cells (PBMC). Response to treatment after 3 months was determined using the EULAR response criteria. We assessed the changes in biological phenotypes during treatment, and whether these changes differed between responders and non-responders with regression analysis. By using measurements from baseline, we also tried to find biomarkers of future MTX response or, alternatively, to predict MTX response. Results: Among the MTX responders, (Good or Moderate according to EULAR treatment response classification, n = 60, 75%), we observed changes in 29 partly overlapping cell types proportions, levels of 13 proteins and expression of 38 genes during treatment. These changes were in most cases suppressions that were stronger among responders compared to non-responders. Within responders to treatment, we observed a suppression of FOXP3 gene expression, reduction of immunoglobulin gene expression and suppression of genes involved in cell proliferation. The proportion of many HLA-DR expressing T-cell populations were suppressed in all patients irrespective of clinical response, and the proportion of many IL21R+ T-cells were reduced exclusively in non-responders. Using only the baseline measurements we could not detect any biomarkers or prediction models that could predict response to MTX. Conclusion: We conclude that a deep molecular and cellular phenotyping of peripheral blood cells in RA patients treated with methotrexate can reveal previously not recognized differences between responders and non-responders during 3 months of treatment with MTX. This may contribute to the understanding of MTX mode of action and explain non-responsiveness to MTX therapy.

7.
J Autoimmun ; 136: 103022, 2023 04.
Article En | MEDLINE | ID: mdl-37001434

A majority of circulating IgG is produced by plasma cells residing in the bone marrow (BM). Long-lived BM plasma cells constitute our humoral immune memory and are essential for infection-specific immunity. They may also provide a reservoir of potentially pathogenic autoantibodies, including rheumatoid arthritis (RA)-associated anti-citrullinated protein autoantibodies (ACPA). Here we investigated paired human BM plasma cell and peripheral blood (PB) B-cell repertoires in seropositive RA, four ACPA+ RA patients and one ACPA- using two different single-cell approaches, flow cytometry sorting, and transcriptomics, followed by recombinant antibody generation. Immunoglobulin (Ig) analysis of >900 paired heavy-light chains from BM plasma cells identified by either surface CD138 expression or transcriptome profiles (including gene expression of MZB1, JCHAIN and XBP1) demonstrated differences in IgG/A repertoires and N-linked glycosylation between patients. For three patients, we identified clonotypes shared between BM plasma cells and PB memory B cells. Notably, four individuals displayed plasma cells with identical heavy chains but different light chains, which may indicate receptor revision or clonal convergence. ACPA-producing BM plasma cells were identified in two ACPA+ patients. Three of 44 recombinantly expressed monoclonal antibodies from ACPA+ RA BM plasma cells were CCP2+, specifically binding to citrullinated peptides. Out of these, two clones reacted with citrullinated histone-4 and activated neutrophils. In conclusion, single-cell investigation of B-cell repertoires in RA bone marrow provided new understanding of human plasma cells clonal relationships and demonstrated pathogenically relevant disease-associated autoantibody expression in long-lived plasma cells.


Arthritis, Rheumatoid , Autoantibodies , Humans , Plasma Cells , Citrulline , Bone Marrow , Clone Cells/metabolism , Immunoglobulin G , Peptides, Cyclic
8.
Arthritis Rheumatol ; 75(2): 164-170, 2023 02.
Article En | MEDLINE | ID: mdl-35930718

OBJECTIVE: The appearance of anti-citrullinated protein antibodies (ACPAs) in the circulation represents a major risk factor for developing rheumatoid arthritis (RA). Patient-derived ACPAs have been shown to induce pain and bone erosion in mice, suggesting an active role in the pathogenicity of RA. We undertook this study to investigate whether ACPAs can induce tenosynovitis, an early sign of RA, in addition to pain and bone loss and whether these symptoms are dependent on peptidyl arginine deiminase 4 (PAD4). METHODS: Monoclonal ACPAs generated from plasma cells of RA patients were transferred to wild-type and PAD4-deficient mice. Pain-like behavior and macroscopic inflammation were monitored for a period of 4 weeks, followed by the analyses of tenosynovitis in the ankle joints using magnetic resonance imaging (MRI) and bone microarchitecture in the tibia using an X-ray microscope. Microscopic changes in the tendon sheath were analyzed in decalcified ankle joint sections. RESULTS: The combination of 2 monoclonal ACPAs (1325:04C03 and 1325:01B09) induced long-lasting pain-like behavior and trabecular bone loss in mice. Although no synovitis was observed macroscopically, we detected tenosynovitis in the ACPA-injected mice by MRI. Microscopic analyses of the joints revealed a cellular hyperplasia and a consequent enlargement of the tendon sheath in the ACPA-treated group. In PAD4-/- mice, the effects of ACPAs on pain-like behavior, tenosynovitis, and bone loss were significantly reduced. CONCLUSION: Monoclonal ACPAs can induce tenosynovitis in addition to pain and bone loss via mechanisms dependent on PAD4-mediated citrullination.


Arthritis, Rheumatoid , Protein-Arginine Deiminase Type 4 , Tenosynovitis , Animals , Mice , Anti-Citrullinated Protein Antibodies , Autoantibodies , Pain , Tenosynovitis/diagnostic imaging
9.
RMD Open ; 8(2)2022 10.
Article En | MEDLINE | ID: mdl-36270743

OBJECTIVE: Lung cancer is a common malignancy in rheumatoid arthritis (RA). Since smoking is a risk factor for both (seropositive) RA and lung cancer, it remains unclear whether RA, in itself, increases lung cancer risk. METHODS: We performed a population-based cohort study of patients with RA and individually matched general population reference individuals identified in Swedish registers and from the Epidemiological Investigation of RA early RA study, prospectively followed for lung cancer occurrence 1995-2018. We calculated incidence rates and performed Cox regression to estimate HRs including 95% CIs of lung cancer, taking smoking and RA serostatus into account. RESULTS: Overall, we included 44 101 patients with RA (590 incident lung cancers, 56 per 100 000), and 216 495 matched general population individuals (1691 incident lung cancers, 33 per 100 000), corresponding to a crude HR (95% CI) of 1.76 (1.60 to 1.93). In subset analyses, this increased risk remained after adjustment for smoking (HR 1.77, 95% CI 1.06 to 2.97). Compared with general population subjects who were never smokers, patients with RA who were ever smokers had almost seven times higher risk of lung cancer. In RA, seropositivity was a significant lung cancer risk factor, even when adjusted for smoking, increasing the incidence 2-6 times. At 20 years, the risk in patients with RA was almost 3%, overall and over 4% for patients who were ever smokers and had at least one RA autoantibody. CONCLUSIONS: Seropositive RA is a risk factor for lung cancer over and above what can be explained by smoking, although residual confounding by smoking or other airway exposures cannot be formally excluded. There is a need for increased awareness and potentially for regular lung cancer screening, at least in a subset of patients with RA.


Arthritis, Rheumatoid , Lung Neoplasms , Humans , Cohort Studies , Early Detection of Cancer/adverse effects , Lung Neoplasms/etiology , Lung Neoplasms/complications , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/epidemiology , Arthritis, Rheumatoid/diagnosis , Smoking/adverse effects , Smoking/epidemiology , Autoantibodies
10.
J Autoimmun ; 133: 102903, 2022 12.
Article En | MEDLINE | ID: mdl-36108504

Proteins subjected to post-translational modifications, such as citrullination, carbamylation, acetylation or malondialdehyde (MDA)-modification are targeted by autoantibodies in seropositive rheumatoid arthritis (RA). Epidemiological and experimental studies have both suggested the pathogenicity of such humoral autoimmunity, however, molecular mechanisms triggered by anti-modified protein antibodies have remained to be identified. Here we describe in detail the pathways induced by anti-MDA modified protein antibodies that were obtained from synovial B cells of RA patients and that possessed robust osteoclast stimulatory potential and induced bone erosion in vivo. Anti-MDA antibodies boosted glycolysis in developing osteoclasts via an FcγRI, HIF-1α and MYC-dependent mechanism and subsequently increased oxidative phosphorylation. Osteoclast development required robust phosphoglyceride and triacylglyceride biosynthesis, which was also enhanced by anti-MDA by modulating citrate production and expression of the glycerol-3-phosphate dehydrogenase 1 (GPD1) and glycerol-3-phosphate acyltransferase 2 (GPAT2) genes. In summary, we described novel metabolic pathways instrumental for osteoclast differentiation, which were targeted by anti-MDA antibodies, accelerating bone erosion, a central component of RA pathogenesis.


Arthritis, Rheumatoid , Autoantibodies , Humans , Malondialdehyde , Lipids
11.
Sci Rep ; 12(1): 11876, 2022 07 13.
Article En | MEDLINE | ID: mdl-35831338

B cells play a significant role in established Rheumatoid Arthritis (RA). However, it is unclear to what extent differentiated B cells are present in joint tissue already at the onset of disease. Here, we studied synovial biopsies (n = 8) captured from untreated patients at time of diagnosis. 3414 index-sorted B cells underwent RNA sequencing and paired tissue pieces were subjected to spatial transcriptomics (n = 4). We performed extensive bioinformatics analyses to dissect the local B cell composition. Select plasma cell immunoglobulin sequences were expressed as monoclonal antibodies and tested by ELISA. Memory and plasma cells were found irrespective of autoantibody status of the patients. Double negative memory B cells were prominent, but did not display a distinct transcriptional profile. The tissue architecture implicate both local B cell maturation via T cell help and plasma cell survival niches with a strong CXCL12-CXCR4 axis. The immunoglobulin sequence analyses revealed clonality between the memory B and plasma cell pools further supporting local maturation. One of the plasma cell-derived antibodies displayed citrulline autoreactivity, demonstrating local autoreactive plasma cell differentiation in joint biopsies captured from untreated early RA. Hence, plasma cell niches are not a consequence of chronic inflammation, but are already present at the time of diagnosis.


Arthritis, Rheumatoid , Synovial Membrane , Autoantibodies , Cell Differentiation , Humans , Synovial Membrane/pathology , Transcriptome
12.
Front Immunol ; 13: 804822, 2022.
Article En | MEDLINE | ID: mdl-35514991

Based on the epidemiological link between periodontitis and rheumatoid arthritis (RA), and the unique feature of the periodontal bacterium Porphyromonas gingivalis to citrullinate proteins, it has been suggested that production of anti-citrullinated protein antibodies (ACPA), which are present in a majority of RA patients, may be triggered in the gum mucosa. To address this hypothesis, we investigated the antibody response to a citrullinated P. gingivalis peptide in relation to the autoimmune ACPA response in early RA, and examined citrulline-reactivity in monoclonal antibodies derived from human gingival B cells. Antibodies to a citrullinated peptide derived from P. gingivalis (denoted CPP3) and human citrullinated peptides were analyzed by multiplex array in 2,807 RA patients and 372 controls; associations with RA risk factors and clinical features were examined. B cells from inflamed gingival tissue were single-cell sorted, and immunoglobulin (Ig) genes were amplified, sequenced, cloned and expressed (n=63) as recombinant monoclonal antibodies, and assayed for citrulline-reactivities by enzyme-linked immunosorbent assay. Additionally, affinity-purified polyclonal anti-cyclic-citrullinated peptide (CCP2) IgG, and monoclonal antibodies derived from RA blood and synovial fluid B cells (n=175), were screened for CPP3-reactivity. Elevated anti-CPP3 antibody levels were detected in RA (11%), mainly CCP2+ RA, compared to controls (2%), p<0.0001, with a significant association to HLA-DRB1 shared epitope alleles, smoking and baseline pain, but with low correlation to autoimmune ACPA fine-specificities. Monoclonal antibodies derived from gingival B cells showed cross-reactivity between P. gingivalis CPP3 and human citrullinated peptides, and a CPP3+/CCP2+ clone, derived from an RA blood memory B cell, was identified. Our data support the possibility that immunity to P. gingivalis derived citrullinated antigens, triggered in the inflamed gum mucosa, may contribute to the presence of ACPA in RA patients, through mechanisms of molecular mimicry.


Arthritis, Rheumatoid , Porphyromonas gingivalis , Antibodies, Monoclonal , Autoantibodies , Citrulline , Epitopes , Humans , Immunoglobulin G , Peptides
13.
Front Med (Lausanne) ; 9: 774945, 2022.
Article En | MEDLINE | ID: mdl-35547229

Introduction: Digital diagnostic decision support tools promise to accelerate diagnosis and increase health care efficiency in rheumatology. Rheumatic? is an online tool developed by specialists in rheumatology and general medicine together with patients and patient organizations. It calculates a risk score for several rheumatic diseases. We ran a pilot study retrospectively testing Rheumatic? for its ability to differentiate symptoms from existing or emerging immune-mediated rheumatic diseases from other rheumatic and musculoskeletal complaints and disorders in patients visiting rheumatology clinics. Materials and Methods: The performance of Rheumatic? was tested using in three university rheumatology centers: (A) patients at Risk for RA (Karolinska Institutet, n = 50 individuals with musculoskeletal complaints and anti-citrullinated protein antibody positivity) (B) patients with early joint swelling [dataset B (Erlangen) n = 52]. (C) Patients with early arthritis where the clinician considered it likely to be of auto-immune origin [dataset C (Leiden) n = 73]. In dataset A we tested whether Rheumatic? could predict the development of arthritis. In dataset B and C we tested whether Rheumatic? could predict the development of an immune-mediated rheumatic diseases. We examined the discriminative power of the total score with the Wilcoxon rank test and the area-under-the-receiver-operating-characteristic curve (AUC-ROC). Next, we calculated the test characteristics for these patients passing the first or second expert-based Rheumatic? scoring threshold. Results: The total test scores differentiated between: (A) Individuals developing arthritis or not, median 245 vs. 163, P < 0.0001, AUC-ROC = 75.3; (B) patients with an immune-mediated arthritic disease or not median 191 vs. 107, P < 0.0001, AUC-ROC = 79.0; but less patients with an immune-mediated arthritic disease or not amongst those where the clinician already considered an immune mediated disease most likely (median 262 vs. 212, P < 0.0001, AUC-ROC = 53.6). Threshold-1 (advising to visit primary care doctor) was highly specific in dataset A and B (0.72, 0.87, and 0.23, respectively) and sensitive (0.67, 0.61, and 0.67). Threshold-2 (advising to visit rheumatologic care) was very specific in all three centers but not very sensitive: specificity of 1.0, 0.96, and 0.91, sensitivity 0.05, 0.07, 0.14 in dataset A, B, and C, respectively. Conclusion: Rheumatic? is a web-based patient-centered multilingual diagnostic tool capable of differentiating immune-mediated rheumatic conditions from other musculoskeletal problems. The current scoring system needs to be further optimized.

15.
Biomacromolecules ; 23(5): 2126-2137, 2022 05 09.
Article En | MEDLINE | ID: mdl-35438963

We describe the study of a novel aptamer-based candidate for treatment of seropositive rheumatoid arthritis. The candidate is a nanoparticle-formulated cyclic citrullinated peptide aptamer, which targets autoantibodies and/or the immune reactions leading to antibody production. Due to its specificity, the peptide aptamer nanoparticles might not interfere with normal immune functions as seen with other disease-modifying antirheumatic drugs. Over a 3-week course of treatment, joint swelling and arthritis score in collagen-induced rats were significantly decreased compared with animals treated with phosphate-buffered saline, unloaded nanoparticles, or nanoparticles with a noncitrullinated control peptide. The reduction in joint swelling was associated with decreased anticitrullinated peptide autoantibody levels in the blood. Treatment with aptamer nanoparticles also increased interleukin-10 levels. The effect seen with the proposed treatment candidate could be mediated by upregulation of anti-inflammatory mediators and decreased levels of anticitrullinated peptide antibodies.


Arthritis, Experimental , Arthritis, Rheumatoid , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Peptides/pharmacology , Peptides/therapeutic use , Peptides, Cyclic/therapeutic use , Rats
16.
Front Cell Infect Microbiol ; 12: 841139, 2022.
Article En | MEDLINE | ID: mdl-35360114

Objectives: Periodontitis and rheumatoid arthritis (RA) are two widespread chronic inflammatory diseases with a previously suggested association. The objective of the current study was to compare the oral microbial composition and host´s inflammatory mediator profile of saliva samples obtained from subjects with periodontitis, with and without RA, as well as to predict biomarkers, of bacterial pathogens and/or inflammatory mediators, for classification of samples associated with periodontitis and RA. Methods: Salivary samples were obtained from 53 patients with periodontitis and RA and 48 non-RA with chronic periodontitis. The microbial composition was identified using 16S rRNA gene sequencing and compared across periodontitis patients with and without RA. Levels of inflammatory mediators were determined using a multiplex bead assay, compared between the groups and correlated to the microbial profile. The achieved data was analysed using PCoA, DESeq2 and two machine learning algorithms, OPLS-DA and sPLS-DA. Results: Differential abundance DESeq2 analyses showed that the four most highly enriched (log2 FC >20) amplicon sequence variants (ASVs) in the non-RA periodontitis group included Alloprevotella sp., Prevotella sp., Haemophilus sp., and Actinomyces sp. whereas Granulicatella sp., Veillonella sp., Megasphaera sp., and Fusobacterium nucleatum were the most highly enriched ASVs (log2 FC >20) in the RA group. OPLS-DA with log2 FC analyses demonstrated that the top ASVs with the highest importance included Vampirovibrio sp. having a positive correlation with non-RA group, and seven ASVs belonging to Sphingomonas insulae, Sphingobium sp., Novosphingobium aromaticivorans, Delftia acidovorans, Aquabacterium spp. and Sphingomonas echinoides with a positive correlation with RA group. Among the detected inflammatory mediators in saliva samples, TWEAK/TNFSF12, IL-35, IFN-α2, pentraxin-3, gp130/sIL6Rb, sIL-6Ra, IL-19 and sTNF-R1 were found to be significantly increased in patients with periodontitis and RA compared to non-RA group with periodontitis. Moreover, correlations between ASVs and inflammatory mediators using sPLS-DA analysis revealed that TWEAK/TNFSF12, pentraxin-3 and IL-19 were positively correlated with the ASVs Sphingobium sp., Acidovorax delafieldii, Novosphingobium sp., and Aquabacterium sp. Conclusion: Our results suggest that the combination of microbes and host inflammatory mediators could be more efficient to be used as a predictable biomarker associated with periodontitis and RA, as compared to microbes and inflammatory mediators alone.


Arthritis, Rheumatoid , Chronic Periodontitis , Microbiota , Humans , Inflammation Mediators , RNA, Ribosomal, 16S/genetics
17.
Front Med (Lausanne) ; 9: 824501, 2022.
Article En | MEDLINE | ID: mdl-35273981

Background: The accumulation of risk for the development of rheumatoid arthritis (RA) is regarded as a continuum that may start with interacting environmental and genetic factors, proceed with the initiation of autoimmunity, and result in the formation of autoantibodies such as anti-citrullinated peptide antibodies (ACPA). In parallel, at-risk individuals may be asymptomatic or experience joint pain (arthralgia) that is itself non-specific or clinically suspicious for evolving RA, even in the absence of overt arthritis. Optimal strategies for the management of people at-risk of RA, both for symptom control and to delay or prevent progression to classifiable disease, remain poorly understood. Methods: To help address this, groups of stakeholders from academia, clinical rheumatology, industry and patient research partners have collaborated to advance understanding, define and study different phases of the at-risk state. In this current report we describe different European initiatives in the field and the successful effort to build a European Registry of at-risk people to facilitate observational and interventional research. Results: We outline similarities and differences between cohorts of at-risk individuals at institutions spanning several countries, and how to best combine them within the new database. Over the past 2 years, besides building the technical infrastructure, we have agreed on a core set of variables that all partners should strive to collect for harmonization purposes. Conclusion: We emphasize to address this process from different angles and touch on the biologic, epidemiologic, analytic, and regulatory aspects of collaborative studies within a meta-database of people at-risk of RA.

18.
Commun Biol ; 5(1): 129, 2022 02 11.
Article En | MEDLINE | ID: mdl-35149753

The inflamed rheumatic joint is a highly heterogeneous and complex tissue with dynamic recruitment and expansion of multiple cell types that interact in multifaceted ways within a localized area. Rheumatoid arthritis synovium has primarily been studied either by immunostaining or by molecular profiling after tissue homogenization. Here, we use Spatial Transcriptomics, where tissue-resident RNA is spatially labeled in situ with barcodes in a transcriptome-wide fashion, to study local tissue interactions at the site of chronic synovial inflammation. We report comprehensive spatial RNA-Seq data coupled to cell type-specific localization patterns at and around organized structures of infiltrating leukocyte cells in the synovium. Combining morphological features and high-throughput spatially resolved transcriptomics may be able to provide higher statistical power and more insights into monitoring disease severity and treatment-specific responses in seropositive and seronegative rheumatoid arthritis.


Arthritis, Rheumatoid , Transcriptome , Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Humans , Synovial Membrane/metabolism
19.
Rheumatology (Oxford) ; 61(4): 1680-1689, 2022 04 11.
Article En | MEDLINE | ID: mdl-34175943

OBJECTIVES: Advances in immunotherapy by blocking TNF have remarkably improved treatment outcomes for Rheumatoid arthritis (RA) patients. Although treatment specifically targets TNF, the downstream mechanisms of immune suppression are not completely understood. The aim of this study was to detect biomarkers and expression signatures of treatment response to TNF inhibition. METHODS: Peripheral blood mononuclear cells (PBMCs) from 39 female patients were collected before anti-TNF treatment initiation (day 0) and after 3 months. The study cohort included patients previously treated with MTX who failed to respond adequately. Response to treatment was defined based on the EULAR criteria and classified 23 patients as responders and 16 as non-responders. We investigated differences in gene expression in PBMCs, the proportion of cell types and cell phenotypes in peripheral blood using flow cytometry and the level of proteins in plasma. Finally, we used machine learning models to predict non-response to anti-TNF treatment. RESULTS: The gene expression analysis in baseline samples revealed notably higher expression of the gene EPPK1 in future responders. We detected the suppression of genes and proteins following treatment, including suppressed expression of the T cell inhibitor gene CHI3L1 and its protein YKL-40. The gene expression results were replicated in an independent cohort. Finally, machine learning models mainly based on transcriptomic data showed high predictive utility in classifying non-response to anti-TNF treatment in RA. CONCLUSIONS: Our integrative multi-omics analyses identified new biomarkers for the prediction of response, found pathways influenced by treatment and suggested new predictive models of anti-TNF treatment in RA patients.


Antirheumatic Agents , Arthritis, Rheumatoid , Antirheumatic Agents/metabolism , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Biomarkers , Female , Humans , Leukocytes, Mononuclear/metabolism , Machine Learning , Methotrexate/metabolism , Methotrexate/therapeutic use , Treatment Outcome , Tumor Necrosis Factor Inhibitors/therapeutic use , Tumor Necrosis Factor-alpha/metabolism
...