Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-39273678

RESUMEN

This non-randomized controlled trial aimed to compare the effect of the 5:2 diet on insulin levels as a primary outcome and markers of insulin secretion (connecting peptide (C-peptide) and insulin-like growth factor binding protein-1 (IGFBP-1)) and sensitivity (Homeostatic Model Assessment for Insulin Resistance (HOMA-IR)), as well as body composition as secondary outcomes in overweight/obese individuals with and without type 2 diabetes (T2D). Ninety-seven participants (62% women), 35 with T2D and 62 BMI- and waist-matched controls without T2D, followed the 5:2 diet (two days per week of fasting) for six months with a 12-month follow-up. At six months, there was no loss to follow-up in the T2D group, whereas four controls discontinued this study. Overall, 82% attended the 12-month follow-up. After the intervention, insulin levels decreased in the control group and glucose decreased in the T2D group, while C-peptide, HOMA-IR, waist circumference, BMI, trunk, and total fat% decreased in both groups. Furthermore, low IGFBP-1, indicating hyperinsulinemia, improved in the T2D group. The changes in fasting glucose and waist measurement were significantly more improved in the T2D group than in the controls. Persistent positive effects were observed at the 12-month follow-up. The 5:2 diet for six months was feasible and efficient to reduce markers of insulin secretion and resistance and therefore holds promise as management of overweight/obesity in subjects with and without T2D.


Asunto(s)
Biomarcadores , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , Secreción de Insulina , Insulina , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/dietoterapia , Femenino , Masculino , Persona de Mediana Edad , Insulina/metabolismo , Insulina/sangre , Péptido C/sangre , Péptido C/metabolismo , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/metabolismo , Proteína 1 de Unión a Factor de Crecimiento Similar a la Insulina/sangre , Adulto , Glucemia/metabolismo , Dieta , Índice de Masa Corporal , Obesidad/metabolismo , Obesidad/dietoterapia , Composición Corporal , Sobrepeso/metabolismo , Sobrepeso/dietoterapia
2.
BMJ Open Diabetes Res Care ; 12(4)2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39242123

RESUMEN

INTRODUCTION: Despite the improvements in diabetes management by continuous glucose monitoring (CGM) it is difficult to capture the complexity of CGM data in one metric. We aimed to develop a clinically relevant multidimensional scoring model with the capacity to identify the most alarming CGM episodes and/or patients from a large cohort. RESEARCH DESIGN AND METHODS: Retrospective CGM data from 2017 to 2020 available in electronic medical records were collected from n=613 individuals with type 1 diabetes (total 82 114 days). A scoring model was developed based on three metrics; glycemic variability percentage, low blood glucose index and high blood glucose index. Values for each dimension were normalized to a numeric score between 0-100. To identify the most representative score for an extended time period, multiple ways to combine the mean score of each dimension were evaluated. Correlations of the scoring model with CGM metrics were computed. The scoring model was compared with interpretations of a clinical expert board (CEB). RESULTS: The dimension of hypoglycemia must be weighted to be representative, whereas the other two can be represented by their overall mean. The scoring model correlated well with established CGM metrics. Applying a score of ≥80 as the cut-off for identifying time periods with a 'true' target fulfillment (ie, reaching all targets for CGM metrics) resulted in an accuracy of 93.4% and a specificity of 97.1%. The accuracy of the scoring model when compared with the CEB was high for identifying the most alarming CGM curves within each dimension of glucose control (overall 86.5%). CONCLUSIONS: Our scoring model captures the complexity of CGM data and can identify both the most alarming dimension of glycemia and the individuals in most urgent need of assistance. This could become a valuable tool for population management at diabetes clinics to enable healthcare providers to stratify care to the patients in greatest need of clinical attention.


Asunto(s)
Automonitorización de la Glucosa Sanguínea , Glucemia , Diabetes Mellitus Tipo 1 , Hipoglucemia , Humanos , Diabetes Mellitus Tipo 1/sangre , Automonitorización de la Glucosa Sanguínea/métodos , Glucemia/análisis , Estudios Retrospectivos , Femenino , Masculino , Adulto , Hipoglucemia/diagnóstico , Persona de Mediana Edad , Estudios de Seguimiento , Adulto Joven , Hemoglobina Glucada/análisis , Adolescente , Biomarcadores/análisis , Biomarcadores/sangre , Pronóstico , Monitoreo Continuo de Glucosa
3.
Diabetologia ; 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271519

RESUMEN

AIMS/HYPOTHESIS: Charcot foot is a complication of diabetes mellitus that has potentially disastrous consequences. Although it was first described in 1868 and found to be associated with diabetes in 1936, there is still uncertainty about the risk factors affecting the development of the condition. Here, we aim to identify risk factors for Charcot foot in a nationwide cohort study. METHODS: A retrospective register-based cohort study was performed for the period 2001-2016, using nationwide registries. Individuals with diabetes and Charcot foot were identified and matched by diabetes type and with similar diabetes duration with individuals with diabetes but not Charcot foot. Logistic regression analyses were used to identify risk factors. RESULTS: A total of 3397 participants with diabetes mellitus and Charcot foot and 27,662 control participants with diabetes but without Charcot foot were included. HbA1c, duration of diabetes, micro- and macroalbuminuria, retinopathy and atherosclerosis (general and peripheral) were identified as risk factors for Charcot foot in participants with type 1 diabetes and participants with type 2 diabetes. CONCLUSIONS/INTERPRETATION: In the most extensive study on Charcot foot to date, we identified distinctive and common risk factors associated with the development of Charcot foot in individuals with type 1 diabetes and type 2 diabetes.

4.
Respir Med ; 232: 107744, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39059726

RESUMEN

BACKGROUND: Few treatment options exist for patients with COVID-19-induced acute respiratory distress syndrome (ARDS). Data on the benefits and harms of hyperbaric oxygen treatment (HBOT) for this condition is limited. OBJECTIVE: To evaluate benefits and harms of HBOT in patients with COVID-19 induced ARDS. METHODS: In this open-label trial conducted at three hospitals in Sweden and Germany, patients with moderate to severe ARDS and at least two risk factors for unfavourable outcome, were randomly assigned (1:1) to medical oxygen 100 %, 2·4 Atmospheres absolute (ATA), 80 min (HBOT) adjuvant to best practice or to best practice alone (Control). Randomisation was stratified by sex and site. The primary endpoint was ICU admission by Day 30. RESULTS: Between June 4, 2020, and Dec 1, 2021, 34 subjects were randomised to HBOT (N = 18) or Control (N = 16). The trial was prematurely terminated for futility. There was no statistically significant difference in ICU admission, 5 (50 %) in Control vs 13 (72 %) in HBOT. OR 2·54 [95 % CI 0·62-10·39], p = 0·19. HARMS: 102 adverse events (AEs) were recorded. 16 (94 %) subjects in the HBOT group and 14 (93 %) in the control group had at least one AE. Three serious adverse events (SAEs), were at least, possibly related to HBOT. All deaths were unlikely related to HBOT. CONCLUSIONS: HBOT did not reduce ICU admission or mortality in patients with COVID-19-induced ARDS. The trial cannot conclude definitive benefits or harms. Treating COVID-19-induced ARDS with HBOT is feasible with a favourable harms profile.


Asunto(s)
COVID-19 , Enfermedad Crítica , Oxigenoterapia Hiperbárica , Síndrome de Dificultad Respiratoria , Humanos , COVID-19/terapia , COVID-19/complicaciones , Masculino , Femenino , Oxigenoterapia Hiperbárica/métodos , Persona de Mediana Edad , Síndrome de Dificultad Respiratoria/terapia , Síndrome de Dificultad Respiratoria/etiología , Anciano , Enfermedad Crítica/terapia , Alemania/epidemiología , Resultado del Tratamiento , Suecia , Unidades de Cuidados Intensivos , Terminación Anticipada de los Ensayos Clínicos , SARS-CoV-2
5.
Diabetes Ther ; 15(9): 2079-2095, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39052163

RESUMEN

INTRODUCTION: The study was designed to assess outcomes with once-daily oral semaglutide in adults with type 2 diabetes (T2D) naïve to injectable glucose-lowering agents, in Swedish clinical practice. METHODS: In this non-interventional, multicentre study, participants initiated oral semaglutide and were followed for 34-44 weeks. The primary endpoint was glycated haemoglobin (HbA1c) change from baseline to end of study (EOS). Secondary endpoints included body weight (BW) change from baseline to EOS, proportion of participants achieving HbA1c < 7%, and proportion achieving both a HbA1c reduction ≥ 1% and BW reduction of ≥ 3% or ≥ 5%, at EOS. Participants completed Diabetes Treatment Satisfaction Questionnaires (DTSQ status/change) and a dosing conditions questionnaire. RESULTS: A total of 187 participants (mean age 62.5 years) initiated oral semaglutide. Baseline mean HbA1c and BW were 7.8% (n = 177) and 96.9 kg (n = 165), respectively. Estimated mean changes in HbA1c and BW were - 0.88%-points (95% confidence interval [CI] - 1.01 to - 0.75; P < 0.0001) and - 4.72% (95% CI - 5.58 to - 3.86; P < 0.0001), respectively. At EOS, 64.6% of participants had HbA1c < 7%, and 22.9% achieved HbA1c reduction of ≥ 1% and BW reduction of ≥ 5%. DTSQ status and change scores improved by 1.44 (P = 0.0260) and 12.3 points (P < 0.0001), respectively. Oral semaglutide was easy or very easy to consume for 86.4% of participants. Most common adverse events (AEs) were gastrointestinal disorders; nine participants (4.8%) had serious AEs; one (0.5%) experienced severe hypoglycaemia. CONCLUSION: In this real-world study population, we observed significant reductions in HbA1c and BW in people living with T2D when prescribed semaglutide tablets as part of routine clinical practice in Sweden, with improved treatment satisfaction among participants and no new safety concerns. TRIAL REGISTRATION: NCT04601753.

6.
Front Nutr ; 11: 1395745, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39027659

RESUMEN

Introduction: Diet stands as a pivotal modifiable risk factor influencing weight gain and the onset of type-2 diabetes (T2D). This study delves into the variation in glucose and regulatory pancreatic hormone levels subsequent to the consumption of meals with differing macronutrient compositions. Methods: The cohort comprised 20 individuals diagnosed with T2D and 21 without diabetes. Participants underwent a cross-over design, consuming four isocaloric meals (600 kcal) enriched in carbohydrate, fiber, fat and protein. Plasma glucose, insulin and glucagon levels were measured at -30, and -5 min, followed by subsequent measurements every 30 min for 240 min post meal intake. Quantification of alterations in the postprandial state was accomplished through the incremental area under the curve (iAUC) and the incremental peak height for the insulin:glucagon ratio (IGR) and plasma glucose levels. The meal demonstrating the lowest responses across these variables was deemed the optimal meal. Results: Meals rich in protein and fat, and consequently low in carbohydrate, exhibited reduced incremental peak and iAUC for both glucose and the IGR in comparison to the other meals. While the protein-enriched meal neared optimal standards, it proved less efficient for individuals without T2D and possessing a low BMI, as well as in those with T2D and poor glycemic control. Conclusion: Our findings endorse the adoption of protein-enriched, low-carbohydrate meals to curtail the meal-induced anabolic hormonal response while averting excessive fluctuations in glucose levels.

7.
Artículo en Inglés | MEDLINE | ID: mdl-38457608

RESUMEN

OBJECTIVE: Individuals positive for anti-cyclic-peptide-antibodies (anti-CCP) and musculoskeletal complaints (MSK-C) are at risk for developing rheumatoid arthritis (RA). In this study we aimed to investigate factors involved in arthritis progression. METHODS: Anti-CCP2-positive individuals with MSK-C referred to a rheumatologist were recruited. Individuals lacked arthritis at clinical and ultrasound examination and were followed for ≥three years or until clinical arthritis diagnosis. Blood samples from inclusion were analyzed for; nine anti-citrullinated-protein-antibody (ACPA) reactivities (citrullinated α-1-enolase, fibrinogen, filaggrin, histone, vimentin and tenascin peptides); 92 inflammation-associated proteins; and HLA-shared epitope alleles. Cox regression was applied to the data to identify independent predictors in a model. RESULTS: 267 individuals were included with median follow up of 49 months (IQR: 22-60). 101 (38%) developed arthritis after median 14 months (IQR: 6-27). The analysis identified that presence of at least one ACPA reactivity (HR 8.0, 95% CI 2.9-22), ultrasound detected tenosynovitis (HR 3.4, 95% CI 2.0-6.0), IL6 levels (HR 1.5, 95% CI 1.2-1.8) and IL15-Rα levels (HR 0.6, 95% CI 0.4-0.9) are significant independent predictors for arthritis progression in a prediction model (Harrell's C 0.76 [SE 0.02], AUC 0.82 [95% CI 0.76-0.89], cross-validated AUC 0.70 [95% CI 0.56-0.85]). CONCLUSION: We propose a high-Risk-RA phase characterized by presence of ACPA reactivity, tenosynovitis, IL6, and IL15-Rα and suggest that these factors need to be further investigated for their biological effects and clinical values, to identify individuals at particular low risk and high risk for arthritis progression.

8.
EMBO Rep ; 25(4): 1752-1772, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38491313

RESUMEN

Emerging evidence indicates that parental diseases can impact the health of subsequent generations through epigenetic inheritance. Recently, it was shown that maternal diabetes alters the metaphase II oocyte transcriptome, causing metabolic dysfunction in offspring. However, type 1 diabetes (T1D) mouse models frequently utilized in previous studies may be subject to several confounding factors due to severe hyperglycemia. This limits clinical translatability given improvements in glycemic control for T1D subjects. Here, we optimize a T1D mouse model to investigate the effects of appropriately managed maternal glycemic levels on oocytes and intrauterine development. We show that diabetic mice with appropriate glycemic control exhibit better long-term health, including maintenance of the oocyte transcriptome and chromatin accessibility. We further show that human oocytes undergoing in vitro maturation challenged with mildly increased levels of glucose, reflecting appropriate glycemic management, also retain their transcriptome. However, fetal growth and placental function are affected in mice despite appropriate glycemic control, suggesting the uterine environment rather than the germline as a pathological factor in developmental programming in appropriately managed diabetes.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hiperglucemia , Humanos , Femenino , Embarazo , Ratones , Animales , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Placenta , Hiperglucemia/genética , Hiperglucemia/metabolismo , Oocitos/metabolismo , Modelos Animales de Enfermedad
9.
EMBO Mol Med ; 16(3): 596-615, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38379095

RESUMEN

Psoriatic arthritis mutilans (PAM) is the rarest and most severe form of psoriatic arthritis, characterized by erosions of the small joints and osteolysis leading to joint disruption. Despite its severity, the underlying mechanisms are unknown, and no susceptibility genes have hitherto been identified. We aimed to investigate the genetic basis of PAM by performing massive parallel sequencing in sixty-one patients from the PAM Nordic cohort. We found rare variants in the NADPH oxidase 4 (NOX4) in four patients. In silico predictions show that the identified variants are potentially damaging. NOXs are the only enzymes producing reactive oxygen species (ROS). NOX4 is specifically involved in the differentiation of osteoclasts, the cells implicated in bone resorption. Functional follow-up studies using cell culture, zebrafish models, and measurement of ROS in patients uncovered that these NOX4 variants increase ROS levels both in vitro and in vivo. We propose NOX4 as the first candidate susceptibility gene for PAM. Our study links high levels of ROS caused by NOX4 variants to the development of PAM, offering a potential therapeutic target.


Asunto(s)
Artritis Psoriásica , Animales , Humanos , NADPH Oxidasa 4/genética , Especies Reactivas de Oxígeno , Artritis Psoriásica/genética , Artritis Psoriásica/tratamiento farmacológico , Pez Cebra , Diferenciación Celular
10.
Antioxidants (Basel) ; 12(12)2023 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-38136163

RESUMEN

High-intensity interval training (HIIT) and hyperbaric oxygen therapy (HBOT) induce reactive oxygen species (ROS) formation and have immunomodulatory effects. The lack of readily available biomarkers for assessing the dose-response relationship is a challenge in the clinical use of HBOT, motivating this feasibility study to evaluate the methods and variability. The overall hypothesis was that a short session of hyperbaric oxygen (HBO2) would have measurable effects on immune cells in the same physiological range as shown in HIIT; and that the individual response to these interventions can be monitored in venous blood and/or peripheral blood mononuclear cells (PBMCs). Ten healthy volunteers performed two interventions; a 28 min HIIT session and 28 min HBO2 in a crossover design. We evaluated bulk RNA sequencing data from PBMCs, with a separate analysis of mRNA and microRNA. Blood gases, peripheral venous oxygen saturation (SpvO2), and ROS levels were measured in peripheral venous blood. We observed an overlap in the gene expression changes in 166 genes in response to HIIT and HBO2, mostly involved in hypoxic or inflammatory pathways. Both interventions were followed by downregulation of several NF-κB signaling genes in response to both HBO2 and HIIT, while several interferon α/γ signaling genes were upregulated. Only 12 microRNA were significantly changed in HBO2 and 6 in HIIT, without overlap between interventions. ROS levels were elevated in blood at 30 min and 60 min compared to the baseline during HIIT, but not during/after HBO2. In conclusion, HBOT changed the gene expression in a number of pathways measurable in PBMC. The correlation of these changes with the dose and individual response to treatment warrants further investigation.

13.
J Clin Invest ; 133(17)2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37655658

RESUMEN

Red blood cells (RBCs) mediate cardioprotection via nitric oxide-like bioactivity, but the signaling and the identity of any mediator released by the RBCs remains unknown. We investigated whether RBCs exposed to hypoxia release a cardioprotective mediator and explored the nature of this mediator. Perfusion of isolated hearts subjected to ischemia-reperfusion with extracellular supernatant from mouse RBCs exposed to hypoxia resulted in improved postischemic cardiac function and reduced infarct size. Hypoxia increased extracellular export of cyclic guanosine monophosphate (cGMP) from mouse RBCs, and exogenous cGMP mimicked the cardioprotection induced by the supernatant. The protection induced by hypoxic RBCs was dependent on RBC-soluble guanylate cyclase and cGMP transport and was sensitive to phosphodiesterase 5 and activated cardiomyocyte protein kinase G. Oral administration of nitrate to mice to increase nitric oxide bioactivity further enhanced the cardioprotective effect of hypoxic RBCs. In a placebo-controlled clinical trial, a clear cardioprotective, soluble guanylate cyclase-dependent effect was induced by RBCs collected from patients randomized to 5 weeks nitrate-rich diet. It is concluded that RBCs generate and export cGMP as a response to hypoxia, mediating cardioprotection via a paracrine effect. This effect can be further augmented by a simple dietary intervention, suggesting preventive and therapeutic opportunities in ischemic heart disease.


Asunto(s)
Cardiotónicos , GMP Cíclico , Eritrocitos , Guanilil Ciclasa Soluble , Animales , Ratones , Hipoxia , Miocitos Cardíacos , Nitratos , Óxido Nítrico , Ratas , Humanos
14.
Diabetes Ther ; 14(9): 1563-1575, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37450196

RESUMEN

INTRODUCTION: This study utilized continuous glucose monitoring data to analyze the effects of switching to treatment with fast-acting insulin aspart (faster aspart) in adults with type 1 diabetes (T1D) in clinical practice. METHODS: A noninterventional database review was conducted in Sweden among adults with T1D using multiple daily injection (MDI) regimens who had switched to treatment with faster aspart as part of basal-bolus treatment. Glycemic data were retrospectively collected during the 26 weeks before switching (baseline) and up to 32 weeks after switching (follow-up) to assess changes in time in glycemic range (TIR; 70-180 mg/dL), mean sensor glucose, glycated hemoglobin (HbA1c) levels, coefficient of variation, time in hyperglycemia (level 1, > 180 to ≤ 250 mg/dL; level 2, > 250 mg/dL), and time in hypoglycemia (level 1, ≥ 54 to < 70 mg/dL; level 2, < 54 mg/dL) (ClinicalTrials.gov Identifier NCT03895515). RESULTS: Overall, 178 participants were included in the study cohort. The analysis population included 82 individuals (mean age 48.5 years) with adequate glucose sensor data. From baseline to follow-up, statistically significant improvements were reported for TIR (mean increase 3.3%-points [approximately 48 min/day]; p = 0.006) with clinically relevant improvement (≥ 5%) in 43% of participants. Statistically significant improvements from baseline were observed for mean sensor glucose levels, HbA1c levels, and time in hyperglycemia (levels 1 and 2), with no statistically significant changes in time spent in hypoglycemia. CONCLUSIONS: Switching to faster aspart was associated with improvements in glycemic control without increasing hypoglycemia in adults with T1D using MDI in this real-world setting.

15.
Nutrients ; 15(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37513510

RESUMEN

The aim of this study was to assess the effect of four isocaloric meals with different macronutrient compositions on postprandial blood glucose, lipids, and glucagon in adults with type 1 diabetes (T1D). Seventeen subjects tested four isocaloric meals in a randomized crossover design. The meal compositions were as follows: high-carbohydrate (HC); high-carbohydrate with extra fiber (HC-fiber); low-carbohydrate high-protein (HP); and low-carbohydrate high-fat (HF). Blood glucose and lipid measurements were collected up to 4 h and glucagon up to 3 h postprandially. Mean postprandial glucose excursions were lower after the HP compared to the HC (p = 0.036) and HC-fiber meals (p = 0.002). There were no differences in mean glucose excursions after the HF meal compared to the HC and HP meals. The HF meal resulted in higher triglyceride excursions compared to the HP meal (p < 0.001) but not compared to the HC or HC-fiber meals. Glucagon excursions were higher at 180 min after the HP meal compared to the HC and HF meals. In conclusion, the low-carbohydrate HP meal showed the most favorable glycemic and metabolic effects during a 4 h postprandial period in subjects with T1D.


Asunto(s)
Diabetes Mellitus Tipo 1 , Adulto , Humanos , Glucemia/metabolismo , Grasas de la Dieta , Estudios Cruzados , Glucagón , Insulina , Periodo Posprandial , Comidas
16.
J Clin Med ; 12(14)2023 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-37510965

RESUMEN

BACKGROUND: A few prospective trials and case series have suggested that hyperbaric oxygen therapy (HBOT) may be efficacious for the treatment of severe COVID-19, but safety is a concern for critically ill patients. We present an interim analysis of the safety of HBOT via a randomized controlled trial (COVID-19-HBO). METHODS: A randomized controlled, open-label, clinical trial was conducted in compliance with good clinical practice to explore the safety and efficacy of HBOT for severe COVID-19 in critically ill patients with moderate acute respiratory distress syndrome (ARDS). Between 3 June 2020, and 17 May 2021, 31 patients with severe COVID-19 and moderate-to-severe ARDS, a ratio of arterial oxygen partial pressure to fractional inspired oxygen (PaO2/FiO2) < 26.7 kPa (200 mmHg), and at least two defined risk factors for intensive care unit (ICU) admission and/or mortality were enrolled in the trial and randomized 1:1 to best practice, or HBOT in addition to best practice. The subjects allocated to HBOT received a maximum of five treatments at 2.4 atmospheres absolute (ATA) for 80 min over seven days. The subjects were followed up for 30 days. The safety endpoints were analyzed. RESULTS: Adverse events (AEs) were common. Hypoxia was the most common adverse event reported. There was no statistically significant difference between the groups. Numerically, serious adverse events (SAEs) and barotrauma were more frequent in the control group, and the differences between groups were in favor of the HBOT in PaO2/FiO2 (PFI) and the national early warning score (NEWS); statistically, however, the differences were not significant at day 7, and no difference was observed for the total oxygen burden and cumulative pulmonary oxygen toxicity dose (CPTD). CONCLUSION: HBOT appears to be safe as an intervention for critically ill patients with moderate-to-severe ARDS induced by COVID-19. CLINICAL TRIAL REGISTRATION: NCT04327505 (31 March 2020) and EudraCT 2020-001349-37 (24 April 2020).

17.
Acta Physiol (Oxf) ; 236(4): e13884, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36056607

RESUMEN

AIM: The influence of dietary carbohydrates and fats on weight gain is inconclusively understood. We studied the acute impact of these nutrients on the overall metabolic state utilizing the insulin:glucagon ratio (IGR). METHODS: Following in vitro glucose and palmitate treatment, insulin and glucagon secretion from islets isolated from C57Bl/6J mice was measured. Our human in vivo study included 21 normoglycaemia (mean age 51.9 ± 16.5 years, BMI 23.9 ± 3.5 kg/m2 , and HbA1c 36.9 ± 3.3 mmol/mol) and 20 type 2 diabetes (T2D) diagnosed individuals (duration 12 ± 7 years, mean age 63.6 ± 4.5 years, BMI 29.1 ± 2.4 kg/m2 , and HbA1c 52.3 ± 9.5 mmol/mol). Individuals consumed a carbohydrate-rich or fat-rich meal (600 kcal) in a cross-over design. Plasma insulin and glucagon levels were measured at -30, -5, and 0 min, and every 30 min until 240 min after meal ingestion. RESULTS: The IGR measured from mouse islets was determined solely by glucose levels. The palmitate-stimulated hormone secretion was largely glucose independent in the analysed mouse islets. The acute meal tolerance test demonstrated that insulin and glucagon secretion is dependent on glycaemic status and meal composition, whereas the IGR was dependent upon meal composition. The relative reduction in IGR elicited by the fat-rich meal was more pronounced in obese individuals. This effect was blunted in T2D individuals with elevated HbA1c levels. CONCLUSION: The metabolic state in normoglycaemic individuals and T2D-diagnosed individuals is regulated by glucose. We demonstrate that consumption of a low carbohydrate diet, eliciting a catabolic state, may be beneficial for weight loss, particularly in obese individuals.


Asunto(s)
Diabetes Mellitus Tipo 2 , Glucagón , Adulto , Anciano , Animales , Humanos , Ratones , Persona de Mediana Edad , Glucemia/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Péptido 1 Similar al Glucagón/metabolismo , Glucosa/metabolismo , Hemoglobina Glucada , Insulina/metabolismo , Nutrientes , Obesidad , Palmitatos , Estudios Cruzados
18.
mBio ; 13(5): e0108622, 2022 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-36121152

RESUMEN

Diabetes mellitus (DM) increases the risk of developing tuberculosis (TB), but the mechanisms behind diabetes-TB comorbidity are still undefined. Here, we studied the role of hypoxia-inducible factor-1 (HIF-1), a main regulator of metabolic and inflammatory responses, in the outcome of Mycobacterium tuberculosis infection of bone marrow-derived macrophages (BMM). We observed that M. tuberculosis infection of BMM increased the expression of HIF-1α and HIF-1-regulated genes. Treatment with the hypoxia mimetic deferoxamine (DFO) further increased levels of HIF-1-regulated immune and metabolic molecules and diminished the intracellular bacterial load in BMM and in the lungs of infected mice. The expression of HIF-1-regulated immunometabolic genes was reduced, and the intracellular M. tuberculosis levels were increased in BMM incubated with high-glucose levels or with methylglyoxal (MGO), a reactive carbonyl compound elevated in DM. In line with the in vitro findings, high M. tuberculosis levels and low HIF-1-regulated transcript levels were found in the lungs from hyperglycemic Leprdb/db compared with wild-type mice. The increased intracellular M. tuberculosis growth and the reduced expression of HIF-1-regulated metabolic and inflammatory genes in BMM incubated with MGO or high glucose were reverted by additional treatment with DFO. Hif1a-deficient BMM showed ablated responses of immunometabolic transcripts after mycobacterial infection at normal or high-glucose levels. We propose that HIF-1 may be targeted for the control of M. tuberculosis during DM. IMPORTANCE People living with diabetes who are also infected with M. tuberculosis are more likely to develop tuberculosis disease (TB). Why diabetic patients have an increased risk for developing TB is not well understood. Macrophages, the cell niche for M. tuberculosis, can express microbicidal mechanisms or be permissive to mycobacterial persistence and growth. Here, we showed that high glucose and carbonyl stress, which mediate diabetes pathogenesis, impair the control of intracellular M. tuberculosis in macrophages. Infection with M. tuberculosis stimulated the expression of genes regulated by the transcription factor HIF-1, a major controller of the responses to hypoxia, resulting in macrophage activation. High glucose and carbonyl compounds inhibited HIF-1 responses by macrophages. Mycobacterial control in the presence of glucose or carbonyl stress was restored by DFO, a compound that stabilizes HIF-1. We propose that HIF-1 can be targeted to reduce the risk of developing TB in people with diabetes.


Asunto(s)
Mycobacterium tuberculosis , Tuberculosis , Ratones , Animales , Mycobacterium tuberculosis/fisiología , Factor 1 Inducible por Hipoxia/metabolismo , Piruvaldehído/metabolismo , Deferoxamina/farmacología , Deferoxamina/metabolismo , Óxido de Magnesio/metabolismo , Tuberculosis/microbiología , Macrófagos/microbiología , Hipoxia/metabolismo , Glucosa/metabolismo
19.
Elife ; 112022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35164902

RESUMEN

Background: Excessive production of mitochondrial reactive oxygen species (ROS) is a central mechanism for the development of diabetes complications. Recently, hypoxia has been identified to play an additional pathogenic role in diabetes. In this study, we hypothesized that ROS overproduction was secondary to the impaired responses to hypoxia due to the inhibition of hypoxia-inducible factor-1 (HIF-1) by hyperglycemia. Methods: The ROS levels were analyzed in the blood of healthy subjects and individuals with type 1 diabetes after exposure to hypoxia. The relation between HIF-1, glucose levels, ROS production and its functional consequences were analyzed in renal mIMCD-3 cells and in kidneys of mouse models of diabetes. Results: Exposure to hypoxia increased circulating ROS in subjects with diabetes, but not in subjects without diabetes. High glucose concentrations repressed HIF-1 both in hypoxic cells and in kidneys of animals with diabetes, through a HIF prolyl-hydroxylase (PHD)-dependent mechanism. The impaired HIF-1 signaling contributed to excess production of mitochondrial ROS through increased mitochondrial respiration that was mediated by Pyruvate dehydrogenase kinase 1 (PDK1). The restoration of HIF-1 function attenuated ROS overproduction despite persistent hyperglycemia, and conferred protection against apoptosis and renal injury in diabetes. Conclusions: We conclude that the repression of HIF-1 plays a central role in mitochondrial ROS overproduction in diabetes and is a potential therapeutic target for diabetic complications. These findings are timely since the first PHD inhibitor that can activate HIF-1 has been newly approved for clinical use. Funding: This work was supported by grants from the Swedish Research Council, Stockholm County Research Council, Stockholm Regional Research Foundation, Bert von Kantzows Foundation, Swedish Society of Medicine, Kung Gustaf V:s och Drottning Victorias Frimurarestifelse, Karolinska Institute's Research Foundations, Strategic Research Programme in Diabetes, and Erling-Persson Family Foundation for S-B.C.; grants from the Swedish Research Council and Swedish Heart and Lung Foundation for T.A.S.; and ERC consolidator grant for M.M.


Asunto(s)
Diabetes Mellitus/genética , Factor 1 Inducible por Hipoxia/antagonistas & inhibidores , Factor 1 Inducible por Hipoxia/genética , Hipoxia , Mitocondrias/metabolismo , Especies Reactivas de Oxígeno/sangre , Especies Reactivas de Oxígeno/metabolismo , Adulto , Animales , Línea Celular , Complicaciones de la Diabetes , Diabetes Mellitus/sangre , Femenino , Humanos , Hiperglucemia/genética , Riñón/patología , Masculino , Ratones , Transducción de Señal , Adulto Joven
20.
Diabetes ; 71(2): 285-297, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34753800

RESUMEN

Red blood cells (RBC) act as mediators of vascular injury in type 2 diabetes mellitus (T2DM). miR-210 plays a protective role in cardiovascular homeostasis and is decreased in whole blood of T2DM mice. We hypothesized that downregulation of RBC miR-210 induces endothelial dysfunction in T2DM. RBC were coincubated with arteries and endothelial cells ex vivo and transfused in vivo to identify the role of miR-210 and its target protein tyrosine phosphatase 1B (PTP1B) in endothelial dysfunction. RBC from patients with T2DM and diabetic rodents induced endothelial dysfunction ex vivo and in vivo. miR-210 levels were lower in human RBC from patients with T2DM (T2DM RBC) than in RBC from healthy subjects. Transfection of miR-210 in human T2DM RBC rescued endothelial function, whereas miR-210 inhibition in healthy subjects RBC or RBC from miR-210 knockout mice impaired endothelial function. Human T2DM RBC decreased miR-210 expression in endothelial cells. miR-210 expression in carotid artery plaques was lower in T2DM patients than in patients without diabetes. Endothelial dysfunction induced by downregulated RBC miR-210 involved PTP1B and reactive oxygen species. miR-210 mimic attenuated endothelial dysfunction induced by RBC via downregulating vascular PTP1B and oxidative stress in diabetic mice in vivo. These data reveal that the downregulation of RBC miR-210 is a novel mechanism driving the development of endothelial dysfunction in T2DM.


Asunto(s)
Diabetes Mellitus Tipo 2 , Endotelio Vascular/fisiopatología , Eritrocitos/metabolismo , MicroARNs/genética , Animales , Estudios de Casos y Controles , Células Cultivadas , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/fisiopatología , Diabetes Mellitus Tipo 2/sangre , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatología , Angiopatías Diabéticas/sangre , Angiopatías Diabéticas/genética , Angiopatías Diabéticas/metabolismo , Angiopatías Diabéticas/fisiopatología , Endotelio Vascular/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , MicroARNs/metabolismo , Proteína Tirosina Fosfatasa no Receptora Tipo 1/fisiología , Ratas , Ratas Wistar , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA