Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Intervalo de año de publicación
1.
Sci Adv ; 10(7): eadj7481, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38354249

RESUMEN

Exercise promotes pulsatile shear stress in the arterial circulation and ameliorates cardiometabolic diseases. However, exercise-mediated metabolic transducers for vascular protection remain under-investigated. Untargeted metabolomic analysis demonstrated that wild-type mice undergoing voluntary wheel running exercise expressed increased endothelial stearoyl-CoA desaturase 1 (SCD1) that catalyzes anti-inflammatory lipid metabolites, namely, oleic (OA) and palmitoleic acids (PA), to mitigate NF-κB-mediated inflammatory responses. In silico analysis revealed that exercise augmented time-averaged wall shear stress but mitigated flow recirculation and oscillatory shear index in the lesser curvature of the mouse aortic arch. Following exercise, endothelial Scd1-deleted mice (Ldlr-/- Scd1EC-/-) on high-fat diet developed persistent VCAM1-positive endothelium in the lesser curvature and the descending aorta, whereas SCD1 overexpression via adenovirus transfection mitigated endoplasmic reticulum stress and inflammatory biomarkers. Single-cell transcriptomics of the aorta identified Scd1-positive and Vcam1-negative endothelial subclusters interacting with other candidate genes. Thus, exercise mitigates flow recirculation and activates endothelial SCD1 to catalyze OA and PA for vascular endothelial protection.


Asunto(s)
Aorta , Actividad Motora , Animales , Ratones , Aorta/metabolismo , Dieta Alta en Grasa , Endotelio Vascular/metabolismo , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo
2.
Bioeng Transl Med ; 9(1): e10616, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38193119

RESUMEN

The characterization of atherosclerotic plaques to predict their vulnerability to rupture remains a diagnostic challenge. Despite existing imaging modalities, none have proven their abilities to identify metabolically active oxidized low-density lipoprotein (oxLDL), a marker of plaque vulnerability. To this end, we developed a machine learning-directed electrochemical impedance spectroscopy (EIS) platform to analyze oxLDL-rich plaques, with immunohistology serving as the ground truth. We fabricated the EIS sensor by affixing a six-point microelectrode configuration onto a silicone balloon catheter and electroplating the surface with platinum black (PtB) to improve the charge transfer efficiency at the electrochemical interface. To demonstrate clinical translation, we deployed the EIS sensor to the coronary arteries of an explanted human heart from a patient undergoing heart transplant and interrogated the atherosclerotic lesions to reconstruct the 3D EIS profiles of oxLDL-rich atherosclerotic plaques in both right coronary and left descending coronary arteries. To establish effective generalization of our methods, we repeated the reconstruction and training process on the common carotid arteries of an unembalmed human cadaver specimen. Our findings indicated that our DenseNet model achieves the most reliable predictions for metabolically vulnerable plaque, yielding an accuracy of 92.59% after 100 epochs of training.

3.
bioRxiv ; 2023 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-37205360

RESUMEN

Exercise modulates vascular plasticity in multiple organ systems; however, the metabolomic transducers underlying exercise and vascular protection in the disturbed flow-prone vasculature remain under-investigated. We simulated exercise-augmented pulsatile shear stress (PSS) to mitigate flow recirculation in the lesser curvature of the aortic arch. When human aortic endothelial cells (HAECs) were subjected to PSS ( τ ave = 50 dyne·cm -2 , ∂τ/∂t = 71 dyne·cm -2 ·s -1 , 1 Hz), untargeted metabolomic analysis revealed that Stearoyl-CoA Desaturase (SCD1) in the endoplasmic reticulum (ER) catalyzed the fatty acid metabolite, oleic acid (OA), to mitigate inflammatory mediators. Following 24 hours of exercise, wild-type C57BL/6J mice developed elevated SCD1-catalyzed lipid metabolites in the plasma, including OA and palmitoleic acid (PA). Exercise over a 2-week period increased endothelial SCD1 in the ER. Exercise further modulated the time-averaged wall shear stress (TAWSS or τ ave) and oscillatory shear index (OSI ave ), upregulated Scd1 and attenuated VCAM1 expression in the disturbed flow-prone aortic arch in Ldlr -/- mice on high-fat diet but not in Ldlr -/- Scd1 EC-/- mice. Scd1 overexpression via recombinant adenovirus also mitigated ER stress. Single cell transcriptomic analysis of the mouse aorta revealed interconnection of Scd1 with mechanosensitive genes, namely Irs2 , Acox1 and Adipor2 that modulate lipid metabolism pathways. Taken together, exercise modulates PSS ( τ ave and OSI ave ) to activate SCD1 as a metabolomic transducer to ameliorate inflammation in the disturbed flow-prone vasculature.

4.
Light Sci Appl ; 12(1): 12, 2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36593252

RESUMEN

Complementary to mainstream cardiac imaging modalities for preclinical research, photoacoustic computed tomography (PACT) can provide functional optical contrast with high imaging speed and resolution. However, PACT has not been demonstrated to reveal the dynamics of whole cardiac anatomy or vascular system without surgical procedure (thoracotomy) for tissue penetration. Here, we achieved non-invasive imaging of rat hearts using the recently developed three-dimensional PACT (3D-PACT) platform, demonstrating the regulated illumination and detection schemes to reduce the effects of optical attenuation and acoustic distortion through the chest wall; thereby, enabling unimpeded visualization of the cardiac anatomy and intracardiac hemodynamics following rapidly scanning the heart within 10 s. We further applied 3D-PACT to reveal distinct cardiac structural and functional changes among the healthy, hypertensive, and obese rats, with optical contrast to uncover differences in cardiac chamber size, wall thickness, and hemodynamics. Accordingly, 3D-PACT provides high imaging speed and nonionizing penetration to capture the whole heart for diagnosing the animal models, holding promises for clinical translation to cardiac imaging of human neonates.

5.
J Cell Mol Med ; 26(20): 5181-5194, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36082581

RESUMEN

Mesodermal progenitors in the second heart field (SHF) express Delta-like-ligand 4 (Dll4) that regulates Notch-mediated proliferation. As cells of SHF lineage mature to assume endocardial and myocardial cell fates, we have shown that Dll4 expression is lost, and the subsequent expression of another Notch ligand Jagged1 regulates Notch-mediated maturation events in the developing heart. A subset of SHF progenitors also matures to form the pharyngeal arch artery (PAA) endothelium. Dll4 was originally identified as an arterial endothelial-specific Notch ligand that plays an important role in blood vessel maturation, but its role in aortic arch maturation has not been studied to date secondary to the early lethality observed in Dll4 knockout mice. We show that, unlike in SHF-derived endocardium and myocardium, Dll4 expression persists in SHF-derived arterial endothelial cells. Using SHF-specific conditional deletion of Dll4, we demonstrate that as SHF cells transition from their progenitor state to an endothelial fate, Dll4-mediated Notch signalling switches from providing proliferative to maturation cues. Dll4 expression maintains arterial identity in the PAAs and plays a critical role in the maturation and re-organization of the 4th pharyngeal arch artery, in particular. Haploinsufficiency of Dll4 in SHF leads to highly penetrant aortic arch artery abnormalities, similar to those observed in the clinic, primarily resulting from aberrant reorganization of bilateral 4th pharyngeal arch arteries. Hence, we show that cells of SHF lineage that assume an arterial endothelial fate continue to express Dll4 and the resulting Dll4-mediated Notch signalling transitions from an early proliferative to a later maturation role during aortic arch development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de Unión al Calcio , Células Endoteliales , Receptores Notch , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Arterias/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Ligandos , Ratones , Ratones Noqueados , Receptores Notch/genética , Receptores Notch/metabolismo
6.
Front Cardiovasc Med ; 9: 841101, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35369301

RESUMEN

Mechano-responsive signaling pathways enable blood vessels within a connected network to structurally adapt to partition of blood flow between organ systems. Wall shear stress (WSS) modulates endothelial cell proliferation and arteriovenous specification. Here, we study vascular regeneration in a zebrafish model by using tail amputation to disrupt the embryonic circulatory loop (ECL) at 3 days post fertilization (dpf). We observed a local increase in blood flow and peak WSS in the Segmental Artery (SeA) immediately adjacent to the amputation site. By manipulating blood flow and WSS via changes in blood viscosity and myocardial contractility, we show that the angiogenic Notch-ephrinb2 cascade is hemodynamically activated in the SeA to guide arteriogenesis and network reconnection. Taken together, ECL amputation induces changes in microvascular topology to partition blood flow and increase WSS-mediated Notch-ephrinb2 pathway, promoting new vascular arterial loop formation and restoring microcirculation.

7.
Theranostics ; 12(6): 2639-2657, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35401811

RESUMEN

Rationale: Macrophages are the frontline immune cells in response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Angiotensin-converting enzyme 2 (ACE2) serves as the binding receptor to SARS-CoV-2 Spike glycoprotein for fusion and internalization into the human host cells. However, the mechanisms underlying SARS-CoV-2-elicited macrophage inflammatory responses remain elusive. Neutralizing SARS-CoV-2 by human ACE2 (hACE2) decoys has been proposed as a therapeutic approach to ameliorate SARS-CoV-2-stimulated inflammation. This study aims to investigate whether an engineered decoy receptor can abrogate SARS-CoV-2-induced macrophage inflammation. Methods: hACE2 was biotinylated to the surface of nano-liposomes (d = 100 nm) to generate Liposome-human ACE2 complex (Lipo-hACE2). Lentivirus expressing Spike protein (D614G) was also created as a pseudo-SARS-CoV-2 (Lenti-Spike). Liposome-hACE2 was used as a decoy receptor or competitive inhibitor to inhibit SARS-CoV-2 or Lenti-Spike-induced macrophage inflammation in vitro and in vivo. Results: Both SARS-CoV-2 and Lenti-Spike stimulated strong inflammatory responses by inducing the expression of key cytokine and chemokines, including IL-1ß, IL-6, TNFα, CCL-2, and CXCL-10, in murine and human macrophages in vitro, whereas Lipo-hACE2 decoy abolished these effects in macrophages. Furthermore, intravenous injection of Lenti-Spike led to increased macrophage and tissue inflammation in wild type mice, which was also abolished by Lipo-hACE2 treatment. Mechanistically, Spike protein stimulated macrophage inflammation by activating canonical NF-κB signaling. RNA sequencing analysis revealed that Lenti-Spike induced over 2,000 differentially expressed genes (DEGs) in murine macrophages, but deficiency of IκB kinase ß (IKKß), a key regulator for NF-κB activation, abrogated Lenti-Spike-elicited macrophage inflammatory responses. Conclusions: We demonstrated that the engineered Lipo-hACE2 acts as a molecular decoy to neutralize SARS-CoV-2 or Spike protein-induced inflammation in both murine and human macrophages, and activation of the canonical IKKß/NF-κB signaling is essential for SARS-CoV-2-elicited macrophage inflammatory responses.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Glicoproteína de la Espiga del Coronavirus , Enzima Convertidora de Angiotensina 2 , Animales , Humanos , Quinasa I-kappa B , Inflamación , Liposomas , Macrófagos/metabolismo , Ratones , FN-kappa B/metabolismo , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/metabolismo
8.
J R Soc Interface ; 19(187): 20210898, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35167770

RESUMEN

Wall shear stress (WSS) contributes to the mechanotransduction underlying microvascular development and regeneration. Using computational fluid dynamics, we elucidated the interplay between WSS and vascular remodelling in a zebrafish model of tail amputation and regeneration. The transgenic Tg (fli1:eGFP; Gata1:ds-red) zebrafish line was used to track the three-dimensional fluorescently labelled vascular endothelium for post-image segmentation and reconstruction of the fluid domain. Particle image velocimetry was used to validate the blood flow. Following amputation to the dorsal aorta and posterior cardinal vein (PCV), vasoconstriction developed in the dorsal longitudinal anastomotic vessel (DLAV) along with increased WSS in the proximal segmental vessels (SVs) from amputation. Angiogenesis ensued at the tips of the amputated DLAV and PCV where WSS was minimal. At 2 days post amputation (dpa), vasodilation occurred in a pair of SVs proximal to amputation, followed by increased blood flow and WSS; however, in the SVs distal to amputation, WSS normalized to the baseline. At 3 dpa, the blood flow increased in the arterial SV proximal to amputation and through anastomosis with DLAV formed a loop with PCV. Thus, our in silico modelling revealed the interplay between WSS and microvascular adaptation to changes in WSS and blood flow to restore microcirculation following tail amputation.


Asunto(s)
Mecanotransducción Celular , Pez Cebra , Amputación Quirúrgica , Animales , Velocidad del Flujo Sanguíneo , Hemodinámica , Resistencia al Corte , Estrés Mecánico
9.
Adv Sci (Weinh) ; 8(23): e2103266, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34687279

RESUMEN

Activation of endothelial cells following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is thought to be the primary driver for the increasingly recognized thrombotic complications in coronavirus disease 2019 patients, potentially due to the SARS-CoV-2 Spike protein binding to the human angiotensin-converting enzyme 2 (hACE2). Vaccination therapies use the same Spike sequence or protein to boost host immune response as a protective mechanism against SARS-CoV-2 infection. As a result, cases of thrombotic events are reported following vaccination. Although vaccines are generally considered safe, due to genetic heterogeneity, age, or the presence of comorbidities in the population worldwide, the prediction of severe adverse outcome in patients remains a challenge. To elucidate Spike proteins underlying patient-specific-vascular thrombosis, the human microcirculation environment is recapitulated using a novel microfluidic platform coated with human endothelial cells and exposed to patient specific whole blood. Here, the blood coagulation effect is tested after exposure to Spike protein in nanoparticles and Spike variant D614G in viral vectors and the results are corroborated using live SARS-CoV-2. Of note, two potential strategies are also examined to reduce blood clot formation, by using nanoliposome-hACE2 and anti-Interleukin (IL) 6 antibodies.


Asunto(s)
Coagulación Sanguínea/fisiología , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/metabolismo , Enzima Convertidora de Angiotensina 2/química , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , Anticuerpos/química , Anticuerpos/inmunología , Anticuerpos/metabolismo , COVID-19/diagnóstico , COVID-19/virología , Células Endoteliales/química , Células Endoteliales/citología , Células Endoteliales/metabolismo , Fibrina/química , Fibrina/metabolismo , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Humanos , Interleucina-6/inmunología , Liposomas/química , Microfluídica/métodos , Mutación , Nanopartículas/química , Agregación Plaquetaria , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/análisis , Glicoproteína de la Espiga del Coronavirus/genética
10.
Curr Top Membr ; 87: 131-151, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34696883

RESUMEN

Living cells are exposed to multiple mechanical stimuli from the extracellular matrix or from surrounding cells. Mechanoreceptors are molecules that display status changes in response to mechanical stimulation, transforming physical cues into biological responses to help the cells adapt to dynamic changes of the microenvironment. Mechanical stimuli are responsible for shaping the tridimensional development and patterning of the organs in early embryonic stages. The development of the heart is one of the first morphogenetic events that occur in embryos. As the circulation is established, the vascular system is exposed to constant shear stress, which is the force created by the movement of blood. Both spatial and temporal variations in shear stress differentially modulate critical steps in heart development, such as trabeculation and compaction of the ventricular wall and the formation of the heart valves. Zebrafish embryos are small, transparent, have a short developmental period and allow for real-time visualization of a variety of fluorescently labeled proteins to recapitulate developmental dynamics. In this review, we will highlight the application of zebrafish models as a genetically tractable model for investigating cardiovascular development and regeneration. We will introduce our approaches to manipulate mechanical forces during critical stages of zebrafish heart development and in a model of vascular regeneration, as well as advances in imaging technologies to capture these processes at high resolution. Finally, we will discuss the role of molecules of the Plexin family and Piezo cation channels as major mechanosensors recently implicated in cardiac morphogenesis.


Asunto(s)
Mecanotransducción Celular , Pez Cebra , Animales , Modelos Animales , Morfogénesis , Estrés Mecánico
11.
Sci Rep ; 11(1): 19859, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34615918

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes of cardiometabolic diseases in overweight individuals. While liver biopsy is the current gold standard to diagnose NAFLD and magnetic resonance imaging (MRI) is a non-invasive alternative still under clinical trials, the former is invasive and the latter costly. We demonstrate electrical impedance tomography (EIT) as a portable method for detecting fatty infiltrate. We enrolled 19 overweight subjects to undergo liver MRI scans, followed by EIT measurements. The MRI images provided the a priori knowledge of the liver boundary conditions for EIT reconstruction, and the multi-echo MRI data quantified liver proton-density fat fraction (PDFF%) to validate fat infiltrate. Using the EIT electrode belts, we circumferentially injected pairwise current to the upper abdomen, followed by acquiring the resulting surface-voltage to reconstruct the liver conductivity. Pearson's correlation analyses compared EIT conductivity or MRI PDFF with body mass index, age, waist circumference, height, and weight variables. We reveal that the correlation between liver EIT conductivity or MRI PDFF with demographics is statistically insignificant, whereas liver EIT conductivity is inversely correlated with MRI PDFF (R = -0.69, p = 0.003, n = 16). As a pilot study, EIT conductivity provides a portable method for operator-independent and cost-effective detection of hepatic steatosis.


Asunto(s)
Impedancia Eléctrica , Hígado Graso/diagnóstico por imagen , Hígado Graso/patología , Sobrepeso/patología , Tomografía/métodos , Adulto , Anciano , Algoritmos , Biomarcadores , Biopsia , Pesos y Medidas Corporales , Manejo de la Enfermedad , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Reproducibilidad de los Resultados , Factores de Riesgo , Sensibilidad y Especificidad
12.
Front Physiol ; 12: 651246, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34113261

RESUMEN

The involvement of natriuretic peptides was studied during the hypertrophic remodeling transition mediated by sequential exposure to chronic hemodynamic overload. We induced hypertension in rats by pressure (renovascular) or volume overload (DOCA-salt) during 6 and 12 weeks of treatment. We also studied the consecutive combination of both models in inverse sequences: RV 6 weeks/DS 6 weeks and DS 6 weeks/RV 6 weeks. All treated groups developed hypertension. Cardiac hypertrophy and left ventricular ANP gene expression were more pronounced in single DS than in single RV groups. BNP gene expression was positively correlated with left ventricular hypertrophy only in RV groups, while ANP gene expression was positively correlated with left ventricular hypertrophy only in DS groups. Combined models exhibited intermediate values between those of single groups at 6 and 12 weeks. The latter stimulus associated to the second applied overload is less effective than the former to trigger cardiac hypertrophy and to increase ANP and BNP gene expression. In addition, we suggest a correlation of ANP synthesis with volume overload and of BNP synthesis with pressure overload-induced hypertrophy after a prolonged treatment. Volume and pressure overload may be two mechanisms, among others, involved in the differential regulation of ANP and BNP gene expression in hypertrophied left ventricles. Plasma ANP levels reflect a response to plasma volume increase and volume overload, while circulating BNP levels seem to be regulated by cardiac BNP synthesis and ventricular hypertrophy.

13.
Free Radic Biol Med ; 151: 99-110, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-31904545

RESUMEN

Air pollution is a rising public health issue worldwide. Cumulative epidemiological and experimental studies have shown that exposure to air pollution such as particulate matter (PM) is linked with increased hospital admissions and all-cause mortality. While previous studies on air pollution mostly focused on the respiratory and cardiovascular effects, emerging evidence supports a significant impact of air pollution on the gastrointestinal (GI) system. The gut is exposed to PM as most of the inhaled particles are removed from the lungs to the GI tract via mucociliary clearance. Ingestion of contaminated food and water is another common source of GI tract exposure to pollutants. Recent studies have associated air pollution with intestinal diseases, including appendicitis, colorectal cancer, and inflammatory bowel disease. In addition to the liver and adipose tissue, intestine is an important organ system for lipid metabolism, and the intestinal redox lipids might be tightly associated with the intestinal and systematic inflammation. The gut microbiota modulates lipid metabolism and contributes to the initiation and development of intestinal disease including inflammatory bowel disease. Recent data support microbiome implication in air pollution-mediated intestinal and systematic effects. In this review, the associations between air pollution and intestinal diseases, and the alterations of intestinal lipidome and gut microbiome by air pollution are highlighted. The potential mechanistic aspects underlying air pollution-mediated intestinal pathology will also be discussed.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Microbiota , Contaminantes Atmosféricos/toxicidad , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Lipidómica , Oxidación-Reducción , Material Particulado/toxicidad
14.
BMC Dev Biol ; 19(1): 5, 2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30909860

RESUMEN

BACKGROUND: The embryonic day E10-13 period of mouse heart development is characterized by robust cardiomyocyte proliferation that creates the compact zone of thickened ventricular wall myocardium. This process is initiated by the formation of the epicardium on the outer heart surface, which releases insulin-like growth factor 2 (IGF2) as the primary cardiomyocyte mitogen. Two receptors mediate IGF2 signaling, the IGF1R and the insulin receptor (INSR). RESULTS: In this study, we addressed the relative roles of the two IGF2 receptors in mouse heart development. We find that both receptors are expressed in the mouse heart during the E10-13 period, although IGF1R is much more prominently activated by IGF2 than INSR. Genetic manipulation indicates that only Igf1r is required for embryonic ventricular wall morphogenesis. INSR is not hyperactivated in the absence of IGF1R, and INSR does not compensate functionally for IGF1R in the absence of the latter. CONCLUSIONS: These results define the molecular components that are responsible for a major burst of cardiomyocyte proliferation during heart development. These results may also be relevant to understanding the efficiency of regeneration of the mammalian heart after neonatal and adult injury.


Asunto(s)
Corazón/embriología , Factor II del Crecimiento Similar a la Insulina/metabolismo , Pericardio/metabolismo , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Animales , Proliferación Celular/fisiología , Ratones , Ratones Noqueados , Miocitos Cardíacos/citología , Organogénesis , Pericardio/crecimiento & desarrollo
15.
Dev Cell ; 33(4): 469-77, 2015 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-26017771

RESUMEN

Maturation of a vascular plexus is a critical and yet incompletely understood process in organ development, and known maturation factors act universally in all vascular beds. In this study, we show that CXCL12 is an organ-specific maturation factor of particular relevance in coronary arterial vasculature. In vitro, CXCL12 does not influence nascent vessel formation, but promotes higher-order complexity of preinitiated vessels. In the heart, CXCL12 is expressed principally by the epicardium, and its receptor CXCR4 is expressed by coronary endothelial cells. CXCL12 is not a chemotactic signal for endothelial cell migration, but rather acts in a paracrine manner to influence the maturation of the coronary vascular plexus. Mutants in CXCL12 signaling show an excess of immature capillary chains and a selective failure in arterial maturation, and become leaky with the onset of coronary perfusion. Failed maturation of the coronary system explains the late-gestation lethality of these mutants.


Asunto(s)
Quimiocina CXCL12/fisiología , Circulación Coronaria/fisiología , Vasos Coronarios/embriología , Embrión de Mamíferos/citología , Endotelio Vascular/citología , Ventrículos Cardíacos/citología , Receptores CXCR4/fisiología , Animales , Células Cultivadas , Vasos Coronarios/citología , Embrión de Mamíferos/metabolismo , Endotelio Vascular/metabolismo , Femenino , Fibrina/metabolismo , Ventrículos Cardíacos/metabolismo , Masculino , Ratones , Ratones Noqueados , Organogénesis/fisiología , Transducción de Señal
16.
Proc Natl Acad Sci U S A ; 112(7): 2070-5, 2015 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-25646471

RESUMEN

The hearts of many mammalian species are surrounded by an extensive layer of fat called epicardial adipose tissue (EAT). The lineage origins and determinative mechanisms of EAT development are unclear, in part because mice and other experimentally tractable model organisms are thought to not have this tissue. In this study, we show that mouse hearts have EAT, localized to a specific region in the atrial-ventricular groove. Lineage analysis indicates that this adipose tissue originates from the epicardium, a multipotent epithelium that until now is only established to normally generate cardiac fibroblasts and coronary smooth muscle cells. We show that adoption of the adipocyte fate in vivo requires activation of the peroxisome proliferator activated receptor gamma (PPARγ) pathway, and that this fate can be ectopically induced in mouse ventricular epicardium, either in embryonic or adult stages, by expression and activation of PPARγ at times of epicardium-mesenchymal transformation. Human embryonic ventricular epicardial cells natively express PPARγ, which explains the abundant presence of fat seen in human hearts at birth and throughout life.


Asunto(s)
Adipogénesis , Mesodermo/citología , PPAR gamma/agonistas , Pericardio/citología , Animales , Línea Celular Transformada , Linaje de la Célula , Humanos , Ratones
17.
Cardiovasc Res ; 105(3): 271-8, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25560321

RESUMEN

AIMS: The strategies that control formation of the ventricular wall during heart development are not well understood. In previous studies, we documented IGF2 as a major mitogenic signal that controls ventricular cardiomyocyte proliferation and chamber wall expansion. Our objective in this study was to define the tissue source of IGF2 in heart development and the upstream pathways that control its expression. METHODS AND RESULTS: Using a number of mouse genetic tools, we confirm that the critical source of IGF2 is the epicardium. We find that epicardial Igf2 expression is controlled in a biphasic manner, first induced by erythropoietin and then regulated by oxygen and glucose with onset of placental function. Both processes are independently controlled by retinoic acid signalling. CONCLUSIONS: Our results demonstrate that ventricular wall cardiomyocyte proliferation is subdivided into distinct regulatory phases. Each involves instructive cues that originate outside the heart and thereby act on the epicardium in an endocrine manner, a mode of regulation that is mostly unknown in embryogenesis.


Asunto(s)
Proliferación Celular , Ventrículos Cardíacos/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Miocitos Cardíacos/metabolismo , Pericardio/metabolismo , Transducción de Señal , Animales , Hipoxia de la Célula , Línea Celular , Eritropoyetina/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Genotipo , Edad Gestacional , Glucosa/metabolismo , Ventrículos Cardíacos/embriología , Factor II del Crecimiento Similar a la Insulina/genética , Ratones Endogámicos ICR , Ratones Transgénicos , Organogénesis , Oxígeno/metabolismo , Pericardio/embriología , Fenotipo , Placenta/metabolismo , Embarazo , Receptores de Eritropoyetina/genética , Receptores de Eritropoyetina/metabolismo , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico
18.
Rev. argent. cardiol ; 79(6): 493-499, dic. 2011. graf, tab
Artículo en Español | LILACS | ID: lil-639682

RESUMEN

Durante el desarrollo de la hipertensión arterial, las interacciones entre las sobrecargas de presión y de volumen conducen a diferentes patrones de hipertrofia cardíaca y a un aumento de los péptidos natriuréticos (PN). Los perfiles de síntesis y secreción de ANP y BNP se han investigado en modelos de hipertensión arterial; sin embargo, aún no se ha estudiado la evolución diferencial de estos perfiles durante períodos agudos y crónicos de la hipertrofia cardíaca producida por sobrecarga de volumen. Por este motivo estudiamos ratas Sprague- Dawley con el modelo DOCA-sal a las 2, 4, 6 y 12 semanas, correlacionando la evolución de dichos perfiles con la hipertrofia cardíaca y la hipertensión arterial. El grado de hipertrofia cardíaca se correlacionó positivamente con la expresión del ANP en el ventrículo izquierdo y con los niveles de ANP en plasma. La expresión del ANP aumentó a las 4 semanas de tratamiento, mientras que la de BNP se incrementó recién a las 6 semanas. Asimismo, el BNP plasmático se incrementó sólo en el grupo con 12 semanas de tratamiento, mientras que el ANP plasmático mostró un aumento a partir de las 2 semanas de tratamiento. Durante el desarrollo de la hipertrofia cardíaca producida en el modelo DOCA-sal, la síntesis y la secreción de los PN responden en forma diferencial, con incremento precoz del ANP. Además, el aumento de éste superó al de BNP en todos los grupos DOCA-sal, lo que permitiría considerar al ANP como un marcador más específico de la sobrecarga de volumen.


The interactions between pressure and volume overload that occur in hypertension lead to different patterns of cardiac hypertrophy and to increase in natriuretic peptides (NPs). The profiles of ANP and BNP synthesis and secretion have been investigated in models of hypertension; however, the different evolution of these profiles during the acute and chronic periods of pressure overload-induced cardiac hypertrophy is still unknown. For this reason, we studied DOCA-salt treated Sprague-Dawley rats at weeks 2, 4, 6 and 12 and correlated the evolution of these profiles with cardiac hypertrophy and hypertension. Cardiac hypertrophy had a positive correlation with ANP expression in the left ventricle and with ANP plasma levels. BNP expression increased after 4 weeks of treatment while ANP increased significantly after 6 weeks. In addition, BNP plasma levels increased only in the group treated for 12 weeks, while ANP plasma levels increased from week 2. NP secretion has a differential response in the early stages of the development of cardiac hypertrophy induced by the DOCA-salt model, with an early increase in ANP. As ANP levels were exceeded to those of BNP in all the DOCA-salt groups, ANP might be considered a more specific marker of volume overload.

19.
Development ; 138(9): 1795-805, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21429986

RESUMEN

Secreted factors from the epicardium are believed to be important in directing heart ventricular cardiomyocyte proliferation and morphogenesis, although the specific factors involved have not been identified or characterized adequately. We found that IGF2 is the most prominent mitogen made by primary mouse embryonic epicardial cells and by a newly derived immortalized mouse embryonic epicardial cell line called MEC1. In vivo, Igf2 is expressed in the embryonic mouse epicardium during midgestation heart development. Using a whole embryo culture assay in the presence of inhibitors, we confirmed that IGF signaling is required to activate the ERK proliferation pathway in the developing heart, and that the epicardium is required for this response. Global disruption of the Igf2 gene, or conditional disruption of the two IGF receptor genes Igf1r and Insr together in the myocardium, each resulted in a significant decrease in ventricular wall proliferation and in ventricular wall hypoplasia. Ventricular cardiomyocyte proliferation in mutant embryos was restored to normal at E14.5, concurrent with the establishment of coronary circulation. Our results define IGF2 as a previously unexplored epicardial mitogen that is required for normal ventricular chamber development.


Asunto(s)
Proliferación Celular , Corazón/embriología , Factor II del Crecimiento Similar a la Insulina/fisiología , Miocitos Cardíacos/fisiología , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Embrión de Mamíferos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Corazón/efectos de los fármacos , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/metabolismo , Factor II del Crecimiento Similar a la Insulina/genética , Factor II del Crecimiento Similar a la Insulina/metabolismo , Factor II del Crecimiento Similar a la Insulina/farmacología , Ratones , Ratones Endogámicos ICR , Ratones Transgénicos , Miocardio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , ARN Interferente Pequeño/farmacología , Receptor IGF Tipo 2/genética , Receptor IGF Tipo 2/metabolismo , Receptor IGF Tipo 2/fisiología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología
20.
Development ; 138(1): 139-48, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21138976

RESUMEN

Epicardial signaling and Rxra are required for expansion of the ventricular myocardial compact zone. Here, we examine Raldh2(-/-) and Rxra(-/-) mouse embryos to investigate the role of retinoic acid (RA) signaling in this developmental process. The heart phenotypes of Raldh2 and Rxra mutants are very similar and are characterized by a prominent defect in ventricular compact zone growth. Although RA activity is completely lost in Raldh2(-/-) epicardium and the adjacent myocardium, RA activity is not lost in Rxra(-/-) hearts, suggesting that RA signaling in the epicardium/myocardium is not required for myocardial compact zone formation. We explored the possibility that RA-mediated target gene transcription in non-cardiac tissues is required for this process. We found that hepatic expression of erythropoietin (EPO), a secreted factor implicated in myocardial expansion, is dependent on both Raldh2 and Rxra. Chromatin immunoprecipitation studies support Epo as a direct target of RA signaling in embryonic liver. Treatment of an epicardial cell line with EPO, but not RA, upregulates Igf2. Furthermore, both Raldh2(-/-) and Rxra(-/-) hearts exhibit downregulation of Igf2 mRNA in the epicardium. EPO treatment of cultured Raldh2(-/-) hearts restores epicardial Igf2 expression and rescues ventricular cardiomyocyte proliferation. We propose a new model for the mechanism of RA-mediated myocardial expansion in which RA directly induces hepatic Epo resulting in activation of epicardial Igf2 that stimulates compact zone growth. This RA-EPO-IGF2 signaling axis coordinates liver hematopoiesis with heart development.


Asunto(s)
Eritropoyetina/metabolismo , Factor II del Crecimiento Similar a la Insulina/metabolismo , Miocardio/metabolismo , Pericardio/metabolismo , Tretinoina/farmacología , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Animales , Células Cultivadas , Inmunoprecipitación de Cromatina , Eritropoyetina/genética , Corazón/efectos de los fármacos , Corazón/embriología , Inmunohistoquímica , Hibridación in Situ , Factor II del Crecimiento Similar a la Insulina/genética , Queratolíticos/farmacología , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Transgénicos , Técnicas de Cultivo de Órganos , Pericardio/efectos de los fármacos , Receptor alfa X Retinoide/genética , Receptor alfa X Retinoide/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...