Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Neurol Surg A Cent Eur Neurosurg ; 85(3): 288-293, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37832590

RESUMEN

BACKGROUND: The rotational stability of directional deep brain stimulation leads is a major prerequisite for sustained clinical effects. Data on directional lead stability are limited and controversial. METHODS: We aimed to evaluate the long-term rotational stability of directional leads and define confounding factors in our own population and the current literature. We retrospectively evaluated the orientation of directional leads in patients with available postoperative computed tomography (CT; T1; day of surgery) and an additional postoperative image (T2; CT or rotational fluoroscopy) performed more than 7 days after the initial scan. The potential impact of intracranial air was assessed. We also reviewed the literature to define factors impacting stability. RESULTS: Thirty-six leads were evaluated. The mean follow-up between T1 and T2 was 413.3 (7-1,171) days. The difference in rotation between T1 and T2 was 2.444 ± 2.554 degrees (range: 0-9.0 degrees). The volume of intracranial air did not impact the rotation. The literature search identified one factor impacting the stability of directional leads, which is the amount of twist applied at implantation. CONCLUSION: Directional leads for deep brain stimulation show stable long-term orientation after implantation. Based on our literature review, large amounts of twist during implantation can lead to delayed rotation and should thus be avoided.


Asunto(s)
Estimulación Encefálica Profunda , Humanos , Estimulación Encefálica Profunda/métodos , Estudios Retrospectivos , Tomografía Computarizada por Rayos X/métodos , Fluoroscopía
2.
J Sleep Res ; 32(2): e13640, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35609965

RESUMEN

Important brainstem regions are involved in the regulation of rapid eye movement sleep. We hypothesized that brainstem stroke is associated with dysregulated rapid eye movement sleep and related muscle activity. We compared quantitative/qualitative polysomnography features of rapid eye movement sleep and muscle activity (any, phasic, tonic) between 15 patients with brainstem stroke (N = 46 rapid eye movement periods), 16 patients with lacunar/non-brainstem stroke (N = 40 rapid eye movement periods), 15 healthy controls (N = 62 rapid eye movement periods), and patients with Parkinson's disease and polysomnography-confirmed rapid eye movement sleep behaviour disorder. Further, in the brainstem group, we performed a magnetic resonance imaging-based lesion overlap analysis. The mean ratio of muscle activity to rapid eye movement sleep epoch in the brainstem group ("any" muscle activity 0.09 ± 0.15; phasic muscle activity 0.08 ± 0.14) was significantly lower than in the lacunar group ("any" muscle activity 0.17 ± 0.2, p < 0.05; phasic muscle activity 0.16 ± 0.19, p < 0.05), and also lower than in the control group ("any" muscle activity 0.15 ± 0.17, p < 0.05). Magnetic resonance imaging-based lesion analysis indicated an area of maximum overlap in the medioventral pontine region for patients with reduced phasic muscle activity index. For all groups, mean values of muscle activity were significantly lower than in the patients with Parkinson's disease and polysomnography-confirmed REM sleep behaviour disorder group ("any" activity 0.51 ± 0.26, p < 0.0001 for all groups; phasic muscle activity 0.42 ± 0.21, p < 0.0001 for all groups). For the tonic muscle activity in the mentalis muscle, no significant differences were found between the groups. In the brainstem group, contrary to the lacunar and the control groups, "any" muscle activity index during rapid eye movement sleep was significantly reduced after the third rapid eye movement sleep phase. This study reports on the impact of brainstem stroke on rapid eye movement atonia features in a human cohort. Our findings highlight the important role of the human brainstem, in particular the medioventral pontine regions, in the regulation of phasic muscle activity during rapid eye movement sleep and the ultradian distribution of rapid eye movement-related muscle activity.


Asunto(s)
Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Accidente Cerebrovascular , Humanos , Sueño REM/fisiología , Enfermedad de Parkinson/complicaciones , Hipotonía Muscular/complicaciones , Trastorno de la Conducta del Sueño REM/complicaciones , Músculos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico por imagen
3.
Sleep Med ; 77: 170-176, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33412362

RESUMEN

REM-sleep behavior disorder (RBD) is a parasomnia and a common sleep disorder in Parkinson's disease (PD). While deep brain stimulation (DBS) is an established treatment for advanced PD with beneficial effects on cardinal PD motor symptoms, the data on the impact of DBS on RBD are limited and often controversial. We reviewed published articles that reported on RBD in the context of DBS surgery via systematic PubMed search. We identified 75 studies and included 12 studies, involving a total of 320 subjects, in our review. Results in respect to EMG activity outcome after subthalamic stimulation are inconsistent. We found no study that reported on RBD outcome after pallidal DBS and no DBS study quantified complex behavior during REM sleep. We also added data on RBD outcome after subthalamic (N = 4 patients) or pallidal (N = 3 patients) DBS from patients with PD with RBD, obtained as part of a prospective DBS study in our centre. Our case series showed an increase of complex behavior during REM (CB-REM) after surgery, independent of DBS target. Conversely, we found a trend towards increasing REM sleep without atonia (RSWA) in subthalamic-stimulated patients and a trend towards decreased RSWA in pallidal stimulated patients. We conclude that CB-REM and RSWA might represent two distinct elements in RBD and should be assessed separately, especially in studies that report on RBD outcome after treatment interventions. Further, larger, prospective, controlled studies in different DBS targets, reporting separately on the different RBD modalities, are needed.


Asunto(s)
Estimulación Encefálica Profunda , Enfermedad de Parkinson , Trastorno de la Conducta del Sueño REM , Humanos , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/terapia , Estudios Prospectivos , Trastorno de la Conducta del Sueño REM/terapia , Sueño REM
4.
Acta Neurochir (Wien) ; 163(1): 197-203, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32915306

RESUMEN

BACKGROUND: The two middle contacts of directional leads (d-leads) for deep brain stimulation are split into three segments, allowing current steering toward desired axial directions. To facilitate programming, their final orientation needs to be reliably determined. However, it is currently unclear whether d-leads rotate after implantation. Our objective was to assess the degree of d-lead rotation after implantation. METHODS: We retrospectively analyzed d-lead orientation on intraoperative X-rays, postoperative CT scans (latencies to surgery: 108-189 min postoperatively), and rotational fluoroscopies (4-9 days postoperatively) for a consecutive series of 32 implanted d-leads. For five d-leads, a CT scan with a mean follow-up of 57 days (range 28-182) was available. All d-leads were implanted with the marker facing anterior and the intention to hit an "iron sight" (ISi) on the X-ray, indicating anterior orientation (i.e., 0° ± 6°). RESULTS: In nine d-leads, an ISi was visible on the final X-ray; median orientation was 1.5° (range 0.5-6.0°) at the first follow-up CT, confirming anterior orientation. In d-leads without ISi or where ISi was not evaluable, the median rotation was 15.5° (9.5-35.0°) and 26.5° (5.5-62.0°), respectively. The orientation of the initial CT was comparable with the orientation determined by the postoperative rotational fluoroscopy and second CT in all d-lead groups. CONCLUSION: D-lead orientation does not change within the first week after implantation. We provide first indications that d-lead orientation remains stable for several weeks after surgery. Determination of lead orientation using marker-based X-ray alone seems too imprecise; adding the ISi method can increase determination of intraoperative orientation.


Asunto(s)
Estimulación Encefálica Profunda/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Estimulación Encefálica Profunda/instrumentación , Electrodos Implantados/normas , Fluoroscopía/métodos , Humanos , Radiografía/métodos , Rotación , Tomografía Computarizada por Rayos X/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...