Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Addit Manuf ; 842024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38567361

RESUMEN

The working curve informs resin properties and print parameters for stereolithography, digital light processing, and other photopolymer additive manufacturing (PAM) technologies. First demonstrated in 1992, the working curve measurement of cure depth vs radiant exposure of light is now a foundational measurement in the field of PAM. Despite its widespread use in industry and academia, there is no formal method or procedure for performing the working curve measurement, raising questions about the utility of reported working curve parameters. Here, an interlaboratory study (ILS) is described in which 24 individual laboratories performed a working curve measurement on an aliquot from a single batch of PAM resin. The ILS reveals that there is enormous scatter in the working curve data and the key fit parameters derived from it. The measured depth of light penetration Dp varied by as much as 7x between participants, while the critical radiant exposure for gelation Ec varied by as much as 70x. This significant scatter is attributed to a lack of common procedure, variation in light engines, epistemic uncertainties from the Jacobs equation, and the use of measurement tools with insufficient precision. The ILS findings highlight an urgent need for procedural standardization and better hardware characterization in this rapidly growing field.

2.
Soft Matter ; 19(35): 6855, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37664982

RESUMEN

Correction for 'A generalized method for alignment of block copolymer films: solvent vapor annealing with soft shear' by Zhe Qiang et al., Soft Matter, 2014, 10, 6068-6076, https://doi.org/10.1039/C4SM00875H.

3.
Soft Matter ; 19(13): 2339-2349, 2023 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-36876897

RESUMEN

The phase behavior of 12-hydroxystearic acid (12-HSA) in even-numbered alkanes ranging from octane (C8) to hexatriacontane (C36) was measured by visual observation of liquid + solid to liquid and liquid-liquid to liquid cloud points and liquid + solid to liquid + liquid transitions. In general solid phases were stabilized to low concentration and higher temperature with increasing alkane length. Liquid-liquid immiscibility was observed in larger alkanes starting with octadecane. The liquidus lines of shorter alkanes (octane to hexadecane) showing only liquid to liquid + solid transitions were fit with an attenuated associated solution model based on the Flory-Huggins lattice model assuming that 12-HSA forms a carboxylic acid dimer over all concentrations investigated. The fit results show that 12-HSA forms associated structures with degrees of association ranging from 3.7-4.5 dimers in the neat 12-HSA. At low concentrations, the 12-HSA is dissociated into dimers, however the free energy cost of dissociation stabilizes the solid phase giving a sharp knee at low concentrations. The role of 12-HSA association in its phase behavior and gelation behavior are discussed. More broadly, the importance of solute association in small molecule organogelators and its potential as a molecular design parameter similar to other component thermodynamic parameters, such as melting temperature and heat of fusion, is discussed.

4.
Macromol Rapid Commun ; 44(1): e2200404, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35750641

RESUMEN

The current work presents the study of a semicrystalline, shape memory polymer synthesized by simultaneous free radical polymerization and crosslinking in a blend of polybutadiene (PB) and octadecyl acrylate. Blending elastomers and phase change materials provide a modular method for new smart materials, such as shape memory polymers. In this system, grafted, side-chain crystalline poly(octadecyl acrylate) (PODA) fixes a programmed shape in the shape memory cycle, while crosslinked polybutadiene drives shape recovery. This work focuses on improving material parameters important for shape memory (crystallinity, gel fraction, melting temperature) by tuning the processing and formulation parameters (amount of crosslinker and PB weight fraction). The result is a shape memory PB-PODA copolymer that can be fabricated by melt processing and programmed without cooling below ambient temperature. It is found that good shape memory (i.e., high shape fixity and recovery) is obtained at a low PB weight fraction where a percolating PODA crystal network is formed at room temperature. The optimized sample shows excellent shape memory properties (fixity > 99%, recovery = 96%). It is shown that it is possible to mold this material into complex 3D shapes or topography with potential use in anticounterfeiting and antitampering applications.


Asunto(s)
Elastómeros , Polímeros , Polímeros/química , Polimerizacion , Acrilatos/química
5.
Gels ; 7(2)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924350

RESUMEN

Ion-pair comonomers (IPCs) where both the anion and cation contain polymerizable functional groups offer a route to prepare polyampholyte, ion-containing polymers. Polymerizing vinyl functional groups by free-radical polymerization produces bridging ion-pairs that act as non-covalent crosslinks between backbone segments. In particular the homopolymerization of the IPC vinyl benzyl tri-n-octylphosphonium styrene sulfonate produces a stiff, glassy polymer with a glass transition temperature (Tg) of 191 °C, while copolymerization with a non-ionic acrylate produces microphase separates ionomers with ion-rich and ion-poor domains. This work investigates the tuning of the Tg of the polyelectrolyte or ion-rich domains of the ionomers by copolymerizing with vinyl benzyl tri-n-octylphosphonium p-toluene sulfonic acid. This chemically similar repeat unit with pendant rather than bridging ion-pairs lowers the Tg compared to the polyelectrolyte or ionomer containing only the IPC segments. Rheological measurements were used to characterize the thermomechanical behavior and Tg of different copolymers. The Tg variation in the polyelectrolyte vs. weight fraction IPC could be fit with either the Gordon-Taylor or Couchman-Karasz equation. Copolymerization of IPC with a chemically similar cationic monomer offers a viable route to systematically vary the Tg of the resulting polymers useful for tailoring the material properties in applications such as elastomers or shape memory polymers.

6.
Macromol Rapid Commun ; 42(11): e2100072, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33759273

RESUMEN

A semi-crystalline, shape memory polymer (SMP) is fabricated by free radical cross-linking, polymerization, and grafting in a blend of n-octadecyl acrylate and polybutadiene (PB). Poly(n-octadecyl acrylate) (PODA) is a side-chain crystalline polymer, which serves as the structure-fixing network counterbalancing the elastically deformed, cross-linked polymer network. At a constant 50/50 ratio of monomer and polymer the amount of free radical initiator, dicumyl peroxide (DCP) is varied from 1% to 5% w/w PB. From swelling measurements and calculation of the cross-link density it is determined that DCP produces greater than one cross-link per DCP molecule. It is found that lower cross-linking efficiency is favorable for higher shape fixity. This lower efficiency is found to produce a higher degree of crystallinity of the PODA in the 2-5% DCP samples, which is determined to be the main driver of higher shape fixity of the polymer. A SMP with >90% fixity and 100% recovery at uniaxial strains from 34-79% is achieved. This material should be useful for mold processing of shape memory articles. This approach provides a method to decouple the elastomeric and thermoplastic portions of a SMP to convert commodity elastomers into SMPs and tailor the shape memory response.


Asunto(s)
Materiales Inteligentes , Acrilatos , Butadienos , Elastómeros , Radicales Libres , Polimerizacion
7.
ACS Appl Mater Interfaces ; 13(11): 12777-12788, 2021 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-33297679

RESUMEN

A polymer blend with high extensibility, exhibiting both shape memory and self-healing, was 4D printed using a low-cost fused filament fabrication (FFF, or fused deposition modeling, FDM) 3D printer. The material is composed of two commercially available commodity polymers, polycaprolactone (PCL), a semi-crystalline thermoplastic, and polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene (SEBS), a thermoplastic elastomer. The shape memory and self-healing properties of the blends were studied systematically through thermo-mechanical and morphological characterization, providing insight into the shape memory mechanism useful for tuning the material properties. In 3D-printed articles, the orientation of the semi-crystalline and micro-phase-separated domains leads to improvement of the shape memory property and extensibility of this material compared to compression-molded samples. By controlling the orientation of the printed fibers, we achieved a high strain at break over 1200%, outperforming previously reported flexible 4D-printed materials. The self-healing agent, PCL, enables the material to heal scratches and cracks and adhere two surfaces after annealing at 80 °C for 30 min. The high performance, multi-functionality, and potential scalability make it a promising candidate for a broad spectrum of applications, including flexible electronics, soft actuators, and deployable devices.

8.
ACS Appl Mater Interfaces ; 11(9): 9425-9437, 2019 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-30793877

RESUMEN

Polyimide aerogels are mechanically strong porous solids with high surface area, low density, and dielectric constants close to 1, making them ideal materials for use as substrates for lightweight antennas. Increasing the flexibility of the polyimide aerogels extends the usefulness for conformal antennas for use on small aircraft such as unmanned air vehicles or personal air mobility vehicles. To this end, polyimide aerogels made with aromatic amines with 4-10 methylene units as flexible spacers between aromatic rings in the backbone have been fabricated. Substituting 25-75 mol % of fully aromatic 2,2'-dimethylbenzidine with these flexible diamines increases the flexibility of polyimide aerogels, making them bendable at thicknesses up to 2-3 mm. The density, dielectric constants, thermal and moisture stability, and mechanical properties of these aerogels were assessed to understand the effect of the amount and length of the methylene spacers on these properties.

9.
ACS Comb Sci ; 21(4): 276-299, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30793882

RESUMEN

Broad-band dielectric spectroscopy (BDS) provides a powerful method of characterizing relaxation dynamics in diverse materials. Here we describe and employ a novel instrument for high-throughput broad-band dielectric spectroscopy (HTBDS) that accelerates this capability, enabling simultaneous measurements of 48 samples. This capability is based around a coaxial switching system for rapid scanning between multiple samples on the same sample stage, coordinated with shared environmental control. We validate the instrument by measuring dielectric response in three polymers, distributed across 48 sample sites, and comparing results to measurements via a standard BDS instrument. Results are found to be reproducible and are in agreement with relaxation times from traditional BDS. We then employ HTBDS to establish mixing rules for glass transition temperatures, kinetic fragility indices, and segmental stretching exponents in a series of acrylate copolymers, a matter of considerable technological interest in a variety of technological applications. Results are consistent with the empirical Fox rule for the glass transition temperature Tg averaging in polymer blends, while they reveal a linear mixing rule for kinetic fragility indices. Finally, we test several proposed correlations between these distinct dynamical properties. These results demonstrate that HTBDS enables measurements of polymer relaxation at a throughput approximately 10 times higher than that of standard BDS approaches, opening the door to high-throughput materials design of dynamic response across a broad range of frequencies.


Asunto(s)
Resinas Acrílicas/química , Espectroscopía Dieléctrica/métodos , Simulación por Computador , Cinética , Modelos Moleculares , Estructura Molecular , Transición de Fase , Programas Informáticos , Temperatura de Transición
10.
ACS Appl Mater Interfaces ; 9(32): 27239-27249, 2017 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-28741361

RESUMEN

Three-dimensional printing enables the net shape manufacturing of objects with minimal material waste and low tooling costs, but the functionality is generally limited by available materials, especially for extrusion-based printing, such as fused deposition modeling (FDM). Here, we demonstrate shape memory behavior of 3D printed objects with FDM using a commercially available olefin ionomer, Surlyn 9520, which is zinc-neutralized poly(ethylene-co-methacrylic acid). The initial fixity for 3D printed and compression-molded samples was similar, but the initial recovery was much lower for the 3D printed sample (R = 58%) than that for the compression-molded sample (R = 83%). The poor recovery in the first cycle is attributed to polyethylene crystals formed during programming that act to resist the permanent network recovery. This effect is magnified in the 3D printed part due to the higher strain (lower modulus in the 3D printed part) at a fixed programming stress. The fixity and recovery in subsequent shape memory cycles are greater for the 3D printed part than for the compression-molded part. Moreover, the programmed strain can be systematically modulated by inclusion of porosity in the printed part without adversely impacting the fixity or recovery. These characteristics enable the direct formation of complex shapes of thermoplastic shape memory polymers that can be recovered in three dimensions with the appropriate trigger, such as heat, through the use of FDM as a 3D printing technology.

11.
Langmuir ; 32(16): 4077-85, 2016 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-27040316

RESUMEN

Block copolymer templating is a versatile approach for the generation of well-defined porosity in a wide variety of framework chemistries. Here, we systematically investigate how the composition of a poly(methoxy poly[ethylene glycol] methacrylate)-block-poly(butyl acrylate) (PMPEG-PBA) template impacts the pore characteristics of mesoporous cobalt oxide films. Three templates with a constant PMPEG segment length and different hydrophilic block volume fractions of 17%, 51%, and 68% for the PMPEG-PBA are cooperatively assembled with cobalt nitrate hexahydrate and citric acid. Irrespective of template composition, a spherical nanostructure is templated and elliptical mesostructures are obtained on calcination due to uniaxial contraction of the film. The average pore size increases from 11.4 ± 2.8 to 48.5 ± 4.3 nm as the length of the PBA segment increases as determined from AFM. For all three templates examined, a maximum in porosity (∼35% in all cases) and surface area is obtained when the precursor solids contain 35-45 wt % PMPEG-PBA. This invariance suggests that the total polymer content drives the structure through interfacial assembly. The composition for maximizing porosity and surface area with the micelle-templating approach results from a general decrease in porosity with increasing cobalt nitrate hexahydrate content and the increasing mechanical integrity of the framework to resist collapse during template removal/crystallization as the cobalt nitrate hexahydrate content increases. Unlike typical evaporation induced self-assembly with sol-gel chemistry, the hydrophilic/hydrophobic composition of the block copolymer template is not a critical component to the mesostructure developed with micelle-templating using metal nitrate-citric acid as the precursor.

12.
Langmuir ; 31(45): 12472-80, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26492220

RESUMEN

Fluorinated polymers in emulsion find enormous applications in hydrophobic surface coating. Currently, lots of efforts are being made to develop specialty polymer emulsions which are free from surfactants. This investigation reports the preparation of a fluorinated copolymer via Pickering miniemulsion polymerization. In this case, 2,2,3,3,3-pentafluoropropyl acrylate (PFPA), methyl methacrylate (MMA), and n-butyl acrylate (nBA) were copolymerized in miniemulsion using Laponite-RDS as the stabilizer. The copolymerization was carried out via reversible addition-fragmentation chain transfer (RAFT) process. Here, a cationic RAFT agent, S-1-dodecyl-S'-(methylbenzyltriethylammonium bromide) trithiocarbonate (DMTTC), was used to promote polymer-Laponite interaction by means of ionic attraction. The polymerization was much faster when Laponite content was 30 wt % or above with 1.2 wt % RAFT agent. The stability of the miniemulsion in terms of zeta potential was found to be dependent on the amount of both Laponite and RAFT agent. The miniemulsion had particle sizes in the range of 200-300 nm. Atomic force microscopy (AFM) and transmission electron microscopy (TEM) analyses showed the formation of Laponite armored spherical copolymer particles. The fluorinated copolymer films had improved surface properties because of polymer-Laponite interaction.

13.
Chem Commun (Camb) ; 51(24): 4997-5000, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25714045

RESUMEN

Rapid chemical transformation from micelle templated precursors (metal nitrate and citric acid) to ordered mesoporous metal carbonates and oxides is demonstrated using microwave heating for cobalt, copper, manganese and zinc. Without aging requirements, <3 min of microwave processing yields highly ordered mesoporous films.


Asunto(s)
Carbonatos/química , Ácido Cítrico/química , Microondas , Nitratos/química , Óxidos/química , Polímeros/síntesis química , Cobalto/química , Cobre/química , Manganeso/química , Tamaño de la Partícula , Polímeros/química , Porosidad , Propiedades de Superficie , Zinc/química
14.
Langmuir ; 31(1): 492-8, 2015 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-25582128

RESUMEN

Maximum bubble pressure rheology is used to characterize organogels of 0.25 wt % 12-hydroxystearic acid (12-HSA) in mineral oil, 3 wt % (1,3:2,4) dibenzylidene sorbitol (DBS) in poly(ethylene glycol), and 1 wt % 1,3:2,4-bis(3,4-dimethylbenzylidene) sorbitol (DMDBS) in poly(ethylene glycol). The maximum pressure required to inflate a bubble at the end of capillary inserted in a gel is measured. This pressure is related to the gel modulus in the case of elastic cavitation and the gel modulus and toughness in the case of irreversible fracture. The 12-HSA/mineral oil gels are used to demonstrate that this is a facile technique useful for studying time-dependent gel formation and aging and the thermal transition from a gel to a solution. Comparison is made to both qualitative gel tilting measurements and quantitative oscillatory shear rheology to highlight the utility of this measurement and its complementary nature to oscillatory shear rheology. The DBS and DMDBS demonstrate the generality of this measurement to measure gel transition temperatures.

15.
ACS Appl Mater Interfaces ; 7(7): 4306-10, 2015 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-25635350

RESUMEN

Roll-to-roll (R2R) processing enables the rapid fabrication of large-area sheets of cooperatively assembled materials for production of mesoporous materials. Evaporation induced self-assembly of a nonionic surfactant (Pluronic F127) with sol-gel precursors and phenolic resin oligomers (resol) produce highly ordered mesostructures for a variety of chemistries including silica, titania, and tin oxide. The cast thick (>200 µm) film can be easily delaminated from the carrier substrate (polyethylene terephthalate, PET) after cross-linking the resol to produce meter-long self-assembled sheets. The surface areas of these mesoporous materials range from 240 m(2)/g to >1650 m(2)/g with these areas for each material comparing favorably with prior reports in the literature. These R2R methods provide a facile route to the scalable production of kilograms of a wide variety of ordered mesoporous materials that have shown potential for a wide variety of applications with small-batch syntheses.

16.
Chem Commun (Camb) ; 50(84): 12684-7, 2014 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-25207485

RESUMEN

Bicontinuous mesoporous carbon films are fabricated by cooperative self-assembly of phenolic resin and amphiphilic triblock copolymer via an order-order transition from cylinders to gyroid. The film morphology is strongly influenced by the details of processing, including age of the resol, resol : template ratio, and the solvent vapor annealing process.

17.
Soft Matter ; 10(32): 6068-76, 2014 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-25004006

RESUMEN

One of the key issues associated with the utilization of block copolymer (BCP) thin films in nanoscience and nanotechnology is control of their alignment and orientation over macroscopic dimensions. We have recently reported a method, solvent vapor annealing with soft shear (SVA-SS), for fabricating unidirectional alignment of cylindrical nanostructures. This method is a simple extension of the common SVA process by adhering a flat, crosslinked poly(dimethylsiloxane) (PDMS) pad to the BCP thin film. The impact of processing parameters, including annealing time, solvent removal rate and the physical properties of the PDMS pad, on the quality of alignment quantified by the Herman's orientational factor (S) is systematically examined for a model system of polystyrene-block-polyisoprene-block-polystyrene (SIS). As annealing time increases, the SIS morphology transitions from isotropic rods to highly aligned cylinders. Decreasing the rate of solvent removal, which impacts the shear rate imposed by the contraction of the PDMS, improves the orientation factor of the cylindrical domains; this suggests the nanostructure alignment is primarily induced by contraction of PDMS during solvent removal. Moreover, the physical properties of the PDMS controlled by the crosslink density impact the orientation factor by tuning its swelling extent during SVA-SS and elastic modulus. Decreasing the PDMS crosslink density increases S; this effect appears to be primarily driven by the changes in the solubility of the SVA-SS solvent in the PDMS. With this understanding of the critical processing parameters, SVA-SS has been successfully applied to align a wide variety of BCPs including polystyrene-block-polybutadiene-block-polystyrene (SBS), polystyrene-block-poly(N,N-dimethyl-n-octadecylammonium p-styrenesulfonate) (PS-b-PSS-DMODA), polystyrene-block-polydimethylsiloxane (PS-b-PDMS) and polystyrene-block-poly(2-vinlypyridine) (PS-b-P2VP). These results suggest that SVA-SS is a generalizable method for the alignment of BCP thin films.

18.
Langmuir ; 30(9): 2530-40, 2014 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-24548298

RESUMEN

Cooperative self-assembly of block copolymers with (in)organic precursors effectively generates ordered nanoporous films, but the porosity is typically limited by the need for a continuous (in)organic phase. Here, a network of homogeneous fibrous nanostructures (≈20 nm diameter cylinders) having high porosity (≈ 60%) is fabricated by cooperative self-assembly of a phenolic resin oligomer (resol) with a novel, nonfrustrated, ABC amphiphilic triblock copolymer template, poly(ethylene oxide)-block-poly(ethyl acrylate)-block-polystyrene (PEO-b-PEA-b-PS), via a thermally induced self-assembly process. Due to the high glass transition temperature (Tg) of the PS segments, the self-assembly behavior is kinetically hindered as a result of competing effects associated with the ordering of the self-assembled system and the cross-linking of resol that suppresses segmental mobility. The balance in these competing processes reproducibly yields a disordered fibril network with a uniform fibril diameter. This nonequilibrium morphology is dependent on the PEO-b-PEA-b-PS to resol ratio with an evolution from a relatively open fibrous structure to an apparent poorly ordered mixed lamellae-cylinder morphology. Pyrolysis of these former films at elevated temperatures yields a highly porous carbon film with the fibril morphology preserved through the carbonization process. These results illustrate a simple method to fabricate thin films and coatings with a well-defined fiber network that could be promising materials for energy and separation applications.

19.
ACS Macro Lett ; 3(4): 374-377, 2014 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35590749

RESUMEN

A facile method was developed for fabrication of a robust shape memory polymer by swelling cross-linked natural rubber with stearic acid. Commercial rubber bands were swollen in molten stearic acid at 75 °C (35 wt % stearic acid loading). When cooled the crystallization of the stearic acid formed a percolated network of crystalline platelets. The microscopic crystals and the cross-linked rubber produce a temporary network and a permanent network, respectively. These two networks allow thermal shape memory cycling with deformation and recovery above the melting point of stearic acid and fixation below that point. Under manual, strain-controlled, tensile deformation the shape memory rubber bands exhibited fixity and recovery of 100% ± 10%.

20.
Langmuir ; 29(27): 8703-12, 2013 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-23738851

RESUMEN

The structure of ordered mesoporous carbons fabricated using poly(styrene-block-N,N,-dimethyl-n-octadecylamine p-styrenesulfonate) (PS-b-PSS-DMODA) as the template and phenolic resin (resol) as the carbon source can be easily manipulated by inclusion of low concentrations of low volatility selective solvents in the casting solution. Casting from neat methyl ethyl ketone yields a disordered structure even upon thermal annealing. However, addition of both dioctyl phthalate (DOP, PS selective) and dimethyl sulfoxide (DMSO, resol and PSS-DMODA selective) at modest concentrations to this casting solution provides sufficient mobility to produce highly ordered films with cylindrical mesopores. The DOP acts to swell the hydrophobic domain and can more than double the mesopore size, while the DMSO acts to swell the resol phase. Moreover, the surface area of the mesoporous carbons increases significantly as the meosopore size increases. This is a result of the decrease in wall thickness, which can be ascertained by the constant d-spacing of the mesostructure as the pore size increases. This behavior is counter to the typical effect of pore swelling agents that increase the pore size and decrease the surface area. Moreover, with only 4 wt % DOP/DMSO in the solution (20 wt % relative to solids), the scattering profiles exhibit many orders of diffraction, even upon carbonization, which is not typically observed for soft templated films. Variation in the concentration of DOP and DMSO during casting enables facile tuning of the structure of mesoporous carbon films.


Asunto(s)
Carbono/química , Dietilhexil Ftalato/química , Dimetilsulfóxido/química , Formaldehído/química , Estructura Molecular , Tamaño de la Partícula , Fenoles/química , Polímeros/química , Porosidad , Solventes/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...