Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
J Clin Med ; 13(10)2024 May 15.
Article En | MEDLINE | ID: mdl-38792465

Background: Varicocele still today represents a common cause of infertility in young men. The treatment strategy remains a surgical approach such as scleroembolization; however, the complete restoration of spermatic parameters afterward requires an average of six or more months to fully regain optimal seminal parameters. Recently, many studies have demonstrated the beneficial effects of Resveratrol in male fertility, given its potential anti-inflammatory, antiapoptotic, and mitochondrial effects. Therefore, Resveratrol-based nutraceuticals could be promising as an adjuvant to mitigate subfertility in patients with varicocele. Methods: In the present study, we retrospectively analyzed the effects of the administration of a Resveratrol-based nutraceutical after the scleroembolization procedure. The improvement of sperm quality in terms of number, motility, and morphology were considered to be the study's main endpoints. A spreadsheet program was used for data analysis, and a p-value of <0.05 was considered significant. Results: We found a statistically significant improvement in the spermatic parameters (sperm count and total motility) and an increase in normal sperm after only 4 months of treatment. The supplementation with a Resveratrol-based nutraceutical associated with the surgical procedure showed encouraging results if compared to data from a control group and the results reported in the literature linked to scleroembolization practice alone. In fact, there was a clear improvement in the seminal parameters at 4 months. Conclusions: This suggests the positive impact of the Resveratrol-based nutraceutical in synergizing with scleroembolization in reducing the time needed to fully recover sperm function.

2.
J Med Chem ; 67(5): 4150-4169, 2024 Mar 14.
Article En | MEDLINE | ID: mdl-38417155

The nuclear receptor ssDAF-12 has been recognized as the key molecular player regulating the life cycle of the nematode parasite Strongyloides stercoralis. ssDAF-12 ligands permit the receptor to function as an on/off switch modulating infection, making it vulnerable to therapeutic intervention. In this study, we report the design and synthesis of a set of novel dafachronic acid derivatives, which were used to outline the first structure-activity relationship targeting the ssDAF-12 receptor and to unveil hidden properties shared by the molecular shape of steroidal ligands that are relevant to the receptor binding and modulation. Moreover, biological results led to the discovery of sulfonamide 3 as a submicromolar ssDAF-12 agonist endowed with a high receptor selectivity, no toxicity, and improved properties, as well as to the identification of unprecedented ssDAF-12 antagonists that can be exploited in the search for novel chemical tools and alternative therapeutic approaches for treating parasitism such as Strongyloidiasis.


Strongyloides stercoralis , Strongyloidiasis , Animals , Humans , Strongyloidiasis/drug therapy , Strongyloidiasis/parasitology , Strongyloides stercoralis/metabolism , Steroids/therapeutic use , Life Cycle Stages , Structure-Activity Relationship
3.
Antibiotics (Basel) ; 12(6)2023 Jun 15.
Article En | MEDLINE | ID: mdl-37370374

Urinary tract infections (UTI), which are among the most frequent cases of infectious diseases, mainly affect women. The most common treatment approach involves the use of antibiotics, although this solution is not always the most suitable, mainly because of the resistance that bacterial strains develop. Proanthocyanidins are a class of polyphenols, abundantly contained in cranberry extracts, which have shown beneficial effects in the treatment of urinary tract infections, due to their anti-adhesive properties toward bacteria, with respect to the membranes of the cells of the urothelium and intestine, thus reducing their virulence. In this work, we demonstrate via microscopy and scattering measurements how a mixture of cranberry and chondroitin sulfate can form a crosslinked structure with barrier properties. By using a design of experiment (DOE), we optimized the mass ratio to obtain a precipitate between cranberry extract and chondroitin sulfate in the presence of N-acetylcysteine and hyaluronic acid. By using transepithelial electrical resistance (TEER) chambers, we confirmed the barrier properties of the best mixture obtained with the DOE. Lastly, the antibiofilm action was investigated against five strains of Escherichia coli with different antibiotic sensitivity. The precipitate displayed a variable inhibitory effect in biofilm formation with major effects in UTI with an antibiotic resistance profile.

4.
ACS Sens ; 8(3): 1064-1075, 2023 03 24.
Article En | MEDLINE | ID: mdl-36847549

DPP IV, otherwise known as CD26 lymphocyte T surface antigen, is a transmembrane glycoprotein also found in circulation in the blood. It plays an important role in several processes like glucose metabolism and T-cell stimulation. Moreover, it is overexpressed in renal, colon, prostate, and thyroid human carcinoma tissues. It can also serve as a diagnostic in patients with lysosomal storage diseases. The biological and clinical importance of having readouts for the activity of this enzyme, in physiological and disease conditions, has led us to design a near-infrared (NIR) fluorimetric probe that also has the characteristics of being ratiometric and excitable by two simultaneous NIR photons. The probe consists of assembling an enzyme recognition group (Gly-Pro) (Mentlein, 1999; Klemann et al., 2016) on the two-photon (TP) fluorophore (derivative of dicyanomethylene-4H-pyran, DCM-NH2) disturbing its NIR characteristic internal charge transfer (ICT) emission spectrum. When the dipeptide group is released by the DPP IV-specific enzymatic action, the donor-acceptor DCM-NH2 is restored, forming a system that shows high ratiometric fluorescence output. With this new probe, we have been able to detect, quickly and efficiently, the enzymatic activity of DPP IV in living cells, human tissues, and whole organisms, using zebrafish. In addition, due to the possibility of being excited by two photons, we can avoid the autofluorescence and subsequent photobleaching that the raw plasma has when it is excited by visible light, achieving detection of the activity of DPP IV in that medium without interference.


Photons , Zebrafish , Animals , Humans , HeLa Cells , Zebrafish/metabolism , Dipeptidyl Peptidase 4/metabolism , Fluorescent Dyes/chemistry
5.
Eur J Med Chem ; 242: 114652, 2022 Nov 15.
Article En | MEDLINE | ID: mdl-36049273

Herein we report our synthetic efforts in supporting the development of the bile alcohol sulfate INT-767, a FXR/TGR5 dual agonist with remarkable therapeutic potential for liver disorders. We describe the process development to a final route for large scale preparation and analogues synthesis. Key sequences include Grignard addition, a one-pot two-step shortening-reduction of the carboxylic side chain, and the final sulfation reaction. The necessity for additional steps such as the protection/deprotection of hydroxyl groups at the steroidal body was also evaluated for step-economy and formation of side-products. Critical bottlenecks such as the side chain degradation have been tackled using flow technology before scaling-up individual steps. The final synthetic route may be successfully employed to produce the amount of INT-767 required to support late-stage clinical development of the compound. Furthermore, potential metabolites have been synthesized, characterized and evaluated for their ability to modulate FXR and TGR5 receptors providing key reference standards for future drug investigations, as well as offering further insights into the structure-activity relationships of this class of compounds.


Bile Acids and Salts , Sodium , Cholestanols , Sulfates , Sulfur Compounds
6.
Org Biomol Chem ; 19(24): 5403-5412, 2021 06 28.
Article En | MEDLINE | ID: mdl-34056641

The four cyclopropyl stereoisomers of Δ7-dafachronic acids were prepared from the bile acid hyodeoxycholic acid and employed as chemical tools to exploit the importance of the orientation and spatial disposition of the carboxyl tail and the C25-methyl group for the binding at the DAF-12 receptor. The synthesis route was based on (a) Walden inversion and stereoselective PtO2-hydrogenation to convert the L-shaped 5ß-cholanoid scaffold into the planar 5α-sterol intermediate; (b) two-carbon homologation of the side chain by Wittig and cyclopropanation reaction; and (c) formation of the 3-keto group and Δ7 double bond. The synthesized isomers were isolated and tested for their activity as DAF-12 ligands by AlphaScreen assays. Results showed a significant loss of potency and efficacy for all the four stereoisomers when compared to the parent endogenous ligand. Computational analysis has evidenced the configurational and conformational arrangement of both the carboxylic and the C25-methyl group of dafachronic acids as key structural determinants for DAF-12 binding and activation.

...