Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(24): 30847-30859, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38853353

RESUMEN

Antibacterial formulations based on zinc oxide nanoparticles (ZnO NPs) are widely used for antibiotic replacement in veterinary medicine and animal nutrition. However, the undesired environmental impact of ZnO NPs triggers a search for alternative, environmentally safer solutions. Here, we show that Zn2+ in its ionic form is a more eco-friendly antibacterial, and its biocidal action rivals that of ZnO NPs (<100 nm size), with a minimal biocidal concentration being 41(82) µg mL-1 vs 5 µg mL-1 of ZnO NPs, as determined for 103(106) CFU mL-1 E. coli. We demonstrate that the biocidal activity of Zn2+ ions is primarily associated with their uptake by E. coli and spontaneous in vivo transformation into insoluble ZnO nanocomposites at an internal bacterial pH of 7.7. Formed in vivo nanocomposite then damages E. coli membrane and intracellular components from the inside, by forming insoluble biocomposites, whose formation can also trigger ZnO characteristic reactions damaging the cells (e.g., by generation of high-potential reactive oxygen species). Our study defines a special route in which Zn2+ metal ions induce the death of bacterial cells, which might be common to other metal ions capable of forming semiconductor oxides and insoluble hydroxides at a slightly alkaline intracellular pH of some bacteria.


Asunto(s)
Antibacterianos , Escherichia coli , Óxido de Zinc , Óxido de Zinc/química , Óxido de Zinc/farmacología , Escherichia coli/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas del Metal/química , Nanopartículas del Metal/toxicidad , Zinc/química , Zinc/farmacología , Iones/química , Pruebas de Sensibilidad Microbiana , Especies Reactivas de Oxígeno/metabolismo , Concentración de Iones de Hidrógeno , Nanocompuestos/química
2.
J Am Chem Soc ; 146(19): 13034-13045, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38698544

RESUMEN

Copper-based materials exhibit significant potential as catalysts for electrochemical CO2 reduction, owing to their capacity to generate multicarbon hydrocarbons. The molecular functionalization of Cu electrodes represents a simple yet powerful strategy for improving the intrinsic activity of these materials by favoring specific reaction pathways through the creation of tailored microenvironments around the surface active sites. However, despite its success, comprehensive mechanistic insights derived from experimental techniques are often limited, leaving the active role of surface modifiers inconclusive. In this work, we show that N-heterocyclic carbene-carbodiimide-functionalized Cu catalysts display a remarkable activity for multicarbon product formation, surpassing bare Cu electrodes by more than an order of magnitude. These hybrid catalysts operate efficiently using an electrolyzer equipped with a gas diffusion electrode, achieving a multicarbon product selectivity of 58% with a partial current density of ca. -80 mA cm-2. We found that the activity for multicarbon product formation is closely linked to the surface charge that accumulates during electrocatalysis, stemming from surface intermediate buildup. Through X-ray photoelectron spectroscopy, we elucidated the role of the molecular additives in altering the electronic structure of the Cu electrodes, promoting the stabilization of surface CO. Additionally, in situ Raman measurements established the identity of the reaction intermediates that accumulate during electrocatalysis, indicating preferential CO binding on Cu step sites, known for facilitating C-C coupling. This study underscores the significant potential of molecular surface modifications in developing efficient electrocatalysts for CO2 reduction, highlighting surface charge as a pivotal descriptor of multicarbon product activity.

3.
Small ; : e2401413, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38733238

RESUMEN

Advancing the field of photocatalysis requires the elucidation of structural properties that underpin the photocatalytic properties of promising materials. The focus of the present study is layered, Bi-rich bismuth oxyhalides, which are widely studied for photocatalytic applications yet poorly structurally understood, due to high levels of disorder, nano-sized domains, and the large number of structurally similar compounds. By connecting insights from multiple scattering techniques, utilizing electron-, X-ray- and neutron probes, the crystal phase of the synthesized materials is allocated as layered Bi24O31X10 (X = Cl, Br), albeit with significant deviation from the reported 3D crystalline model. The materials comprise anisotropic platelet-shaped crystalline domains, exhibiting significant in-plane ordering in two dimensions but disorder and an ultra-thin morphology in the layer stacking direction. Increased synthesis pH tailored larger, more ordered crystalline domains, leading to longer excited state lifetimes determined via femtosecond transient absorption spectroscopy (fs-TAS). Although this likely contributes to improved photocatalytic properties, assessed via the photooxidation of benzylamine, increasing the overall surface area facilitated the most significant improvement in photocatalytic performance. This study, therefore, enabled both phase allocation and a nuanced discussion of the structure-property relationship for complicated, ultra-thin photocatalysts.

4.
RSC Adv ; 13(24): 16688-16692, 2023 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-37274392

RESUMEN

The article mentioned in the title of this comment paper reports on an investigation of the organic binder presence and distribution on stone wool fibres with surface sensitive techniques (X-ray photoelectron spectroscopy (XPS), QUASES XPS modelling, time-of-flight secondary ion mass spectrometry (ToF-SIMS) mapping) and attempts to correlate the results with fibre performance in in vitro acellular biosolubility tests. However, the study has assumptions, hypothesis and results that do not take into account the recognised science and regulations on biopersistence of stone wool fibres, limitations of the utilized surface sensitive techniques and modelling approach and it contains a contradiction with biosolubility experiments. In this comment article, we discuss these points, propose improved QUASES XPS modelling and present recent ToF-SIMS mapping results that reflect biosolubility behaviour of the stone wool fibres.

5.
Macromol Biosci ; 23(8): e2200528, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36971346

RESUMEN

The immobilization of enzymes on solid supports is an important challenge in biotechnology and biomedicine. In contrast to other methods, enzyme deposition in polymer brushes offers the benefit of high protein loading that preserves enzymatic activity in part due to the hydrated 3D environment that is available within the brush structure. The authors equipped planar and colloidal silica surfaces with poly(2-(diethylamino)ethyl methacrylate)-based brushes to immobilize Thermoplasma acidophilum histidine ammonia lyase, and analyzed the amount and activity of the immobilized enzyme. The poly(2-(diethylamino)ethyl methacrylate) brushes are attached to the solid silica supports either via a "grafting-to" or a "grafting-from" method. It is found that the grafting-from method results in higher amounts of deposited polymer and, consequently, higher amounts of Thermoplasma acidophilum histidine ammonia lyase. All polymer brush-modified surfaces show preserved catalytic activity of the deposited Thermoplasma acidophilum histidine ammonia lyase. However, immobilizing the enzyme in polymer brushes using the grafting-from method resulted in twice the enzymatic activity from the grafting-to approach, illustrating a successful enzyme deposition on a solid support.


Asunto(s)
Histidina Amoníaco-Liasa , Polímeros , Polímeros/química , Metacrilatos/química , Dióxido de Silicio
6.
Dalton Trans ; 51(35): 13515-13526, 2022 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-35997150

RESUMEN

A series of small, middle, and large anatase TiO2 particles were synthesized through the hydrolysis of titanium tetraisopropoxide (TTIP) to investigate the size-related chemical bond length and strength variation. Unit cell volume contraction with decreasing particle size is identified from Rietveld refinement of high-resolution synchrotron powder X-ray diffraction (PXRD) patterns. More titanium vacancies are also found for smaller anatase particles. Contrary to the variation in unit cell volume, a larger Debye temperature ΘD(TiO2) derived from the linear and nonlinear fitting of atomic displacement parameters (Uiso(TiO2)) as a function of temperature is revealed for smaller anatase particles. The length of the Ti-O bond is also shorter for smaller anatase particles. Furthermore, optical phonon frequencies blue-shifting with the decrease in anatase particle size are determined by Raman spectroscopy. X-ray photoelectron spectroscopy (XPS) analysis rules out the presence of a large amount of Ti3+, while optical diffuse reflectance measurement eliminates the existence of a large number of oxygen vacancies in all particles. Combining the analysis results of PXRD, thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR), more structural and surface hydroxyls (-OH) appear to exist in smaller anatase particles. It is the structural and surface -OH that are responsible for the size-related chemical bond length and strength variation in the as-synthesized anatase particles.

7.
Angew Chem Int Ed Engl ; 60(42): 22826-22832, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34396665

RESUMEN

A nitrogen-stabilized single-atom catalyst containing low-valence zinc atoms (Znδ+ -NC) is reported. It contains saturated four-coordinate (Zn-N4 ) and unsaturated three-coordinate (Zn-N3 ) sites. The latter makes Zn a low-valence state, as deduced from X-ray photoelectron spectroscopy, X-ray absorption spectroscopy, electron paramagnetic resonance, and density functional theory. Znδ+ -NC catalyzes electrochemical reduction of CO2 to CO with near-unity selectivity in water at an overpotential as low as 310 mV. A current density up to 1 A cm-2 can be achieved together with high CO selectivity of >95 % using Znδ+ -NC in a flow cell. Calculations suggest that the unsaturated Zn-N3 could dramatically reduce the energy barrier by stabilizing the COOH* intermediate owing to the electron-rich environment of Zn. This work sheds light on the relationship among coordination number, valence state, and catalytic performance and achieves high current densities relevant for industrial applications.

8.
Nanoscale ; 13(22): 10035-10043, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34037649

RESUMEN

Nano- and micromotors are self-navigating particles that gain locomotion using fuel from the environment or external power sources to outperform Brownian motion. Herein, motors that make use of surface polymerization of hydroxyethylmethylacrylate to gain locomotion are reported, synthetically mimicking microorganisms' way of propulsion. These motors have enhanced Brownian motion with effective diffusion coefficients up to ∼0.5 µm2 s-1 when mesoporous Janus particles are used. Finally, indication of swarming is observed when high numbers of motors homogenously coated with atom-transfer radical polymerization initiators are used, while high-density Janus motors lost their ability to exhibit enhanced Brownian motion. This report illustrates an alternative route to self-propelled particles, employing a polymerization process that has the potential to be applied for various purposes benefiting from the tool box of modern polymer chemistry.

9.
JACS Au ; 1(3): 362-368, 2021 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-33829214

RESUMEN

The Au-C linkage has been demonstrated as a robust interface for coupling thin organic films on Au surfaces. However, the nature of the Au-C interaction remains elusive up to now. Surface-enhanced Raman spectroscopy was previously used to assign a band at 412 cm-1 as a covalent sigma Au-C bond for films generated by spontaneous reduction of the 4-nitrobenzenediazonium salt on Au nanoparticles. However, this assignment is disputed based on our isotopic shift study. We now provide direct evidence for covalent Au-C bonds on the surface of Au nanoparticles using 13C cross-polarization/magic angle spinning solid-state NMR spectroscopy combined with isotope substitution. A 13C NMR shift at 165 ppm was identified as an aromatic carbon linked to the gold surface, while the shift at 148 ppm was attributed to C-C junctions in the arylated organic film. This demonstration of the covalent sigma Au-C bond fills the gap in metal-C bonds for organic films on surfaces, and it has great practical and theoretical significance in understanding and designing a molecular junction based on the Au-C bond.

10.
Molecules ; 25(23)2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33261028

RESUMEN

Lignin is currently an underutilized part of biomass; thus, further research into lignin could benefit both scientific and commercial endeavors. The present study investigated the potential of kraft lignin as a support material for the removal of hydrogen sulfide (H2S) from gaseous streams, such as biogas. The removal of H2S was enabled by copper ions that were previously adsorbed on kraft lignin. Copper adsorption was based on two different strategies: either directly on lignin particles or by precipitating lignin from a solution in the presence of copper. The H2S concentration after the adsorption column was studied using proton-transfer-reaction mass spectrometry, while the mechanisms involved in the H2S adsorption were studied with X-ray photoelectron spectroscopy. It was determined that elemental sulfur was obtained during the H2S adsorption in the presence of kraft lignin and the differences relative to the adsorption on porous silica as a control are discussed. For kraft lignin, only a relatively low removal capacity of 2 mg of H2S per gram was identified, but certain possibilities to increase the removal capacity are discussed.


Asunto(s)
Biocombustibles/análisis , Cobre/química , Sulfuro de Hidrógeno/análisis , Sulfuro de Hidrógeno/aislamiento & purificación , Lignina/química , Cobre/metabolismo , Concentración de Iones de Hidrógeno , Lignina/metabolismo
11.
Cryst Growth Des ; 20(6): 3762-3771, 2020 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-33192182

RESUMEN

The production of novel composite materials, assembled using biomimetic polymers known as peptoids (N-substituted glycines) to nucleate CaCO3, can open new pathways for advanced material design. However, a better understanding of the heterogeneous CaCO3 nucleation process is a necessary first step. We determined the thermodynamic and kinetic parameters for calcite nucleation on self-assembled monolayers (SAMs) of nanosheet-forming peptoid polymers and simpler, alkanethiol analogues. We used nucleation rate studies to determine the net interfacial free energy (γ net) for the peptoid-calcite interface and for SAMs terminated with carboxyl headgroups, amine headgroups, or a mix of the two. We compared the results with γ net determined from dynamic force spectroscopy (DFS) and from density functional theory (DFT), using COSMO-RS simulations. Calcite nucleation has a lower thermodynamic barrier on the peptoid surface than on carboxyl and amine SAMs. From the relationship between nucleation rate (J 0) and saturation state, we found that under low-saturation conditions, i.e. <3.3 (pH 9.0), nucleation on the peptoid substrate was faster than that on all of the model surfaces, indicating a thermodynamic drive toward heterogeneous nucleation. When they are taken together, our results indicate that nanosheet-forming peptoid monolayers can serve as an organic template for CaCO3 polymorph growth.

12.
J Colloid Interface Sci ; 556: 458-465, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31473536

RESUMEN

The unambiguous determination of the chemical functionality over graphene oxide (GO) is important to unleash its potential applications. However, the mapping of oxygen functionalities distribution remains to be unequivocally determined because of highly inhomogeneous non-stoichiometric structures and ultra-thin layers of GO. In this study, we report an experimental observation of the spatial distribution of oxygen functional groups on monolayer and multilayer GO using AFM-IR, atomic force microscopy coupled with infrared spectroscopy. Overcoming conventional IR diffraction limit for several micrometers, the novel AFM-IR reaches high spatial resolution ∼20 nm and could detect IR absorption on ∼1 nm thickness of monolayer GO. With nanoscale chemical mapping, the distribution of different oxygen functional groups is distinguished with AFM-IR over the GO surface. It allows us to observe that these oxygen functional groups prefer to sit on the fold areas, in discrete domains and on the edges of GO, which gave more insights into its chemical nature. The determination of the position of functional groups through precise imaging contributes to our understanding of GO structure-properties relations and paves the way for targeted tethering of polymers, biomaterials, and other nanostructures.

13.
Chem Sci ; 10(10): 3065-3073, 2019 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-30996888

RESUMEN

The synthesis and characterization of a chiral, enneanuclear Mn(iii)-based, Single-Molecule Magnet, [Mn9O4(Me-sao)6(L)3(MeO)3(MeOH)3]Cl (1; Me-saoH2 = methylsalicylaldoxime, HL = lipoic acid) is reported. Compound 1 crystallizes in the orthorhombic P212121 space group and consists of a metallic skeleton describing a defect super-tetrahedron missing one vertex. The chirality of the [MnIII 9] core originates from the directional bridging of the Me-sao2- ligands via the -N-O- oximate moieties, which define a clockwise (1ΔΔ) or counter-clockwise (1ΛΛ) rotation in both the upper [MnIII 3] and lower [MnIII 6] subunits. Structural integrity and retention of chirality upon dissolution and upon deposition on (a) gold nanoparticles, 1@AuNPs, (b) transparent Au(111) surfaces, 1ΛΛ@t-Au(111); 1ΔΔ@t-Au(111), and (c) epitaxial Au(111) on mica surfaces, 1@e-Au(111), was confirmed by CD and IR spectroscopies, mass spectrometry, TEM, XPS, XAS, and AFM. Magnetic susceptibility and magnetization measurements demonstrate the simultaneous retention of SMM behaviour and optical activity, from the solid state, via dissolution, to the surface deposited species.

14.
Environ Sci Technol ; 53(8): 4389-4396, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30859830

RESUMEN

Sulfidized zerovalent iron (sZVI) is widely studied because of its remarkable reactivity with a number of groundwater contaminants. Nonetheless, its nanoscale structure is not well understood. As such, there is an uncertainty on how sZVI structure controls its reactivity and fate in the subsurface environment. Using pair distribution function analyses, we show that sZVI made from one-pot synthesis using dithionite as sulfur precursor consists of an Fe0 core with a shell composed dominantly of short-range ordered Fe(OH)2 and FeS having coherent scattering domains of less than 8 Å. Reactivity experiments show that increasing shell material significantly decreases rate for cis-dichloroethene (cis-DCE) reduction, whereas the opposite is observed for trichloroethene (TCE). The results are consistent with a conceptual model wherein cis-DCE reduction requires active Fe0 sites, which become largely inaccessible when shell material is abundant. Conversely, an increase in FeS shell volume led to faster TCE reduction via direct electron transfer. Aging experiments showed that sZVI retained >50% of its TCE removal efficiency after 30-day exposure to artificial groundwaters. The decline in sZVI reactivity due to long-term exposure to groundwater, is attributed to Fe0 oxidation from water reduction coupled by reorganization and recrystallization of the poorly ordered shell material, which in turn reduced access to reactive FeS sites.


Asunto(s)
Agua Subterránea , Tricloroetileno , Contaminantes Químicos del Agua , Hierro , Azufre
15.
Water Res ; 156: 168-178, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30913420

RESUMEN

The removal of bromide (Br-) and iodide (I-) from source waters mitigates the formation of brominated and iodinated disinfection by-products (DBPs), which are more toxic than their chlorinated analogues. In this study, we report on our recently developed environmental-friendly method for the preparation of novel silver chloride/superfine activated carbon composite (AgCl-SPAC) to rapidly and selectively remove Br- and I- from surface waters. The material characteristics were tracked, before and after treatment, using scanning electron microscopy (SEM), energy-dispersive X-ray (EDX), X-ray diffraction (XRD), and X-ray photoelectron spectra (XPS) spectroscopies. The results showed very fast removal kinetics of Br- and I- by AgCl-SPAC with equilibrium times at 150 s and <10 s, respectively (i.e., 2-3 orders of magnitudes faster than previously tested Ag-based composites). In addition, AgCl-SPAC was evaluated under eight different Cl- concentrations up to 400 mg/L and exhibited high removal efficiencies for I- (i.e., >90% at all tested conditions) and Br- (i.e, >80% at Cl- = 0.5-200 mg/L, and 60-75% at extreme Cl- conditions = 300-400 mg/L). Unlike previous Ag-based composites, AgCl-SPAC performance was not affected by elevated concentrations of two types of natural organic matter (2-16 mg-NOM/L). The superior performance was further confirmed in four different surface waters and one groundwater. After the removal of Br- and I- from all waters by AgCl-SPAC, the subsequent DBPs formation (trihalomethanes, haloacetic acids, and haloacetonitriles), total organic halogens (TOX), bromine substitution factor (BSF), and calculated cytotoxicity under the uniform formation conditions (UFC) decreased significantly. Overall, this novel composite represents a promising alternative approach, to be integrated continuously or seasonally, for controlling the formation of brominated and/or iodinated DBPs at water treatment plants.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Bromuros , Desinfección , Halogenación , Yoduros , Trihalometanos
16.
ACS Appl Mater Interfaces ; 9(9): 8344-8353, 2017 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-28195455

RESUMEN

3-Aminopropylsilane (APS) coupling agent is widely used in industrial, biomaterial, and medical applications to improve adhesion of polymers to inorganic materials. However, during exposure to elevated humidity and temperature, the deposited APS layers can decompose, leading to reduction in coupling efficiency, thus decreasing the product quality and the mechanical strength of the polymer-inorganic material interface. Therefore, a better understanding of the chemical state and stability of APS on inorganic surfaces is needed. In this work, we investigated APS adhesion on silica wafers and compared its properties with those on complex silicate surfaces such as those used by industry (mineral fibers and fiber melt wafers). The APS was deposited from aqueous and organic (toluene) solutions and studied with surface sensitive techniques, including X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), streaming potential, contact angle, and spectroscopic ellipsometry. APS configuration on a model silica surface at a range of coverages was simulated using density functional theory (DFT). We also studied the stability of adsorbed APS during aging at high humidity and elevated temperature. Our results demonstrated that APS layer formation depends on the choice of solvent and substrate used for deposition. On silica surfaces in toluene, APS formed unstable multilayers, while from aqueous solutions, thinner and more stable APS layers were produced. The chemical composition and substrate roughness influence the amount of deposited APS. More APS was deposited and its layers were more stable on fiber melt than on silica wafers. The changes in the amount of adsorbed APS can be successfully monitored by streaming potential. These results will aid in improving industrial- and laboratory-scale APS deposition methods and increasing adhesion and stability, thus increasing the quality and effectiveness of materials where APS is used as a coupling agent.

17.
Langmuir ; 30(22): 6622-8, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24852930

RESUMEN

An electrochemical approach is introduced for the versatile carboxylation of multi-layered graphene in 0.1 M Bu4NBF4/MeCN. First, the graphene substrate (i.e., graphene chemically vapor-deposited on Ni) is negatively charged at -1.9 V versus Ag/AgI in a degassed solution to allow for intercalation of Bu4N(+) and, thereby, separation of the individual graphene sheets. In the next step, the strongly activated and nucleophilic graphene is allowed to react with added carbon dioxide in an addition reaction, introducing carboxylate groups stabilized by Bu4N(+) already present. This procedure may be carried out repetitively to further enhance the carboxylation degree under controlled conditions. Encouragingly, the same degree of control is even attainable, if the intercalation and carboxylation is carried out simultaneously in a one-step procedure, consisting of simply electrolyzing in a CO2-saturated solution at the graphene electrode for a given time. The same functionalization degree is obtained for all multi-layered regions, independent of the number of graphene sheets, which is due to the fact that the entire graphene structure is opened in response to the intercalation of Bu4N(+). Hence, this electrochemical method offers a versatile procedure to make all graphene sheets in a multi-layered but expanded structure accessible for functionalization. On a more general level, this approach will provide a versatile way of forming new hybrid materials based on intimate bond coupling to graphene via carboxylate groups.

18.
Small ; 10(5): 922-34, 2014 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-24745057

RESUMEN

Electrografting using aryldiazonium salts provides a fast and efficient technique to functionalize commercially available 3-5 layered graphene (vapour-deposited) on nickel. In this study, Raman spectroscopy is used to quantify the grafting efficiency of cyclic voltammetry which is one of the most versatile, yet simple, electrochemical techniques available. To a large extent the number of defects/substituents introduced to the basal plane of high-quality graphene by this procedure can be controlled through the sweeping conditions employed. After extended electrografting the defect density reaches a saturation level ( ∼ 10(13) cm(-2)) which is independent of the quality of the graphene expressed through its initial content of defects. However, it is reached within fewer voltammetric cycles for low-quality graphene. Based on these results it is suggested that the grafting occurs (a) directly at defect sites for, in particular, low-quality graphene, (b) directly at the basal plane for, in particular, high-quality graphene, and/or (c) at already grafted molecules to give a mushroom-like film growth for all films. Moreover, it is shown that a tertiary alkyl bromide can be introduced at a given surface density to serve as radical initiator for surface-initiated atom transfer radical polymerization (SI-ATRP). Brushes of poly(methyl methacrylate) are grown from these substrates, and the relationship between polymer thickness and sweeping conditions is studied.

19.
Langmuir ; 29(44): 13595-604, 2013 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-24144237

RESUMEN

A versatile method based on electrografting of aryldiazonium salts was used to introduce covalently attached initiators for atom transfer radical polymerization (ATRP) on glassy carbon surfaces. Polymer brushes of ferrocenylmethyl methacrylate were prepared from the surface-attached initiators, and these films were thoroughly analyzed using various techniques, including X-ray photoelectron spectroscopy (XPS), infrared reflection-absorption spectroscopy (IRRAS), ellipsometry, and electrochemistry. Of particular interest was the electrochemical characterization of the electron transfer through the diazonium-based initiator layer to the redox centers in the polymer brush films. It was found that the apparent rate constant of electron transfer decreases exponentially with the dry-state thickness of this layer. To investigate the electron transfer in the brushes themselves, scanning electrochemical microscopy (SECM) was applied, thereby allowing the effect from the initiator layer to be excluded. The unusual transition feature of the approach curves recorded suggests that an initial fast charge transfer to the outermost-situated ferrocenyl groups is followed by a slower electron transport involving the neighboring redox units.

20.
J Colloid Interface Sci ; 404: 207-14, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23711662

RESUMEN

This work demonstrates the application of carbohydrate based methacrylate polymer brush, poly(2-lactobionamidoethyl methacrylate), for the purpose of cell adhesion studies. The first part of the work illustrates the effects of the structure of the aminosilane based ATRP initiator layer on the polymerization kinetics of 2-lactobionamidoethyl methacrylate) (LAMA) monomer on thermally oxidized silicon wafer. Both monolayer and multilayered aminosilane precursor layers have been prepared followed by reaction with 2-bromoisobutyrylbromide to form the ATRP initiator layer. It is inferred from the kinetic studies that the rate of termination is low on a multilayered initiator layer compared to a disordered monolayer structure. However both initiator types results in similar graft densities. Furthermore, it is shown that thick comb-like poly(LAMA) brushes can be constructed by initiating a second ATRP process on a previously formed poly(LAMA) brushes. The morphology of human hepatocellular carcinoma cancer cells (HepG2) on the comb-like poly(LAMA) brush layer has been studied. The fluorescent images of the HepG2 cells on the glycopolymer brush surface display distinct protrusions that extend outside of the cell periphery. On the other hand the cells on bare glass substrate display spheroid morphology. Further analysis using ToF-SIMS imaging shows that the HepG2 cells on glycopolymer surfaces is enriched with protein fragment along the cell periphery which is absent in the case of cells on bare glass substrate. It is suggested that the interaction of the galactose units of the polymer brush with the asialoglycoprotein receptor (ASGPR) of HepG2 cells has resulted in the protein enrichment along the cell periphery.


Asunto(s)
Receptor de Asialoglicoproteína/metabolismo , Materiales Biocompatibles Revestidos/química , Ácidos Polimetacrílicos/química , Receptor de Asialoglicoproteína/química , Adhesión Celular , Vidrio/química , Células Hep G2 , Humanos , Silanos/química , Silicio/química , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...