Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 17 de 17
1.
PLoS One ; 19(4): e0299105, 2024.
Article En | MEDLINE | ID: mdl-38557606

Bacterial blight is a serious disease of carrot production worldwide. Under favorable conditions, the causal organism Xanthomonas hortorum pv. carotae causes serious loss especially in seed production because of its seed-borne character. Unlike fungal diseases, the treatment of bacterial diseases is limited and methods such as hot water or sodium hypochlorite (bleach) treatment are mainly used by seed companies. Here, we compared the efficacy of hot water treatment, sodium hypochlorite treatment and treatment with three phenolic compounds-carvacrol, thymol and eugenol, to eliminate Xanthomonas growth in vitro and subsequently in vivo on seeds of Xhc low, medium and highly infested carrot seed lots. The complete elimination of Xhc from germinated plants was obtained only for Xhc low infested seed lot with 1% sodium hypochlorite and carvacrol solutions in concentrations of 0.0196%- 0.313%. The significant reduction of Xhc presence in germinated plants of Xhc medium infested seed lot was achieved with 1% sodium hypochlorite treatment and hot water treatment. However, hot water treatment resulted in a significant reduction of seed germination percentage as well. Considering the elimination of Xhc infection from germinated plants and the effect on seed germination and plant vigor, 0.0196% carvacrol solution was suggested as an alternative to 1% sodium hypochlorite treatment regarding additional costs related to the liquidation of used treated water and to hot water treatment that has been proved to be insufficient to obtain disease-free plants.


Daucus carota , Sodium Hypochlorite/pharmacology , Cymenes , Seeds/microbiology
2.
Plant Dis ; 2023 May 10.
Article En | MEDLINE | ID: mdl-37163311

Neofusicoccum parvum (Pennycook & Samuels) Crous, Slippers & A.J.L. Phillips is a cosmopolitan pathogen causing dieback of multiple diverse woody hosts including highbush blueberry (Vaccinium corymbosum L.). This fungus can survive inside colonized plants without causing any symptoms for several years. Once the endophytic lifestyle is switched to the parasitic one, the symptoms of dieback can rapidly occur (bronze leaves, necroses under the bark, apoplexy) and the plant usually declines within a few weeks (Slipper and Wingfield 2007). In August 2022, blueberry plants displaying symptoms described above were observed in a production orchard located in Hovorany, the Czech Republic. Around 3 % of 1000 observed plants were symptomatic. In order to identify the pathogen, leaves, stems and roots of three diseased plants were collected, sectioned into small pieces (5 × 5 mm), surface sterilized (60 s in 75% ethanol, followed by 60 s in 1% sodium hypochlorite and rinsed three times using sterile distilled water), plated on potato dextrose agar (PDA) supplemented with 0.5 g/liter of streptomycin sulfate (PDAS) (Biosynth, Staad, Switzerland) and incubated at 25°C for 2 weeks at dark. Newly developed mycelia were immediately transferred to fresh PDA plates and purified by single-spore or hyphal-tip isolation. In total 33 fungal isolates were obtained. All the 33 isolates shared similar morphology and resembled Botryosphaeriaceae spp. Colonies on PDA (7 d at 25°C) were felty, white to iron grey in the centre. Conidiomata were observed on sterile pine needles on 2 % water agar (WA) at 25°C under near-UV light after 2 wks (110-220 × 60-175 µm). Conidia (n=30) were cylindrical to ellipsoidal, hyaline, 0(-1)-septate, (3.8-8.1 × 2-3 µm). Two representative isolates were deposited at the Westerdijk Fungal Biodiversity Institute, Utrecht, the Netherlands (CBS 149846 and CBS 149847). The partial internal transcribed spacer (ITS) regions, beta-tubulin gene (tub2) and translation elongation factor 1-alpha (tef) gene were amplified from genomic DNA of both isolates following primers and protocols previously described (Eichmeier et al. 2020). Newly generated sequences were deposited in NCBI GenBank (acc. nos. ITS: OQ376566, OQ376567; tub2: OQ401701, OQ401702 and tef: OQ401699, OQ401700), being >99% identical (ITS 483/484 nt, tub2 426/430 nt and tef 230/232 nt) with the ex-type ITS (AY236943), tub2 (AY236888) and tef (AY236917) sequences of N. parvum strain CMW9081. Phylogenetically, newly obtained isolates grouped with ex-type and another three cultures of N. parvum in the three gene-based phylogenetic tree with strong 98/1.0 (BP/PP) support. To confirm pathogenicity, one-year-old canes of ten two-year-old V. corymbosum plants grown in pots were wounded by a 5 mm diam cork borer, and a 5-mm mycelial plug of a 7-day-old culture of both (CBS 149846 and CBS 149847) strains (five plants per strain) was inserted into the wound. Ten plants were inoculated with sterile PDA plugs and served as controls. Wounds were covered by sterile wet cotton, sealed with Parafilm® and inoculated plants were maintained in a growth chamber at 20 °C with 12/12 h light/dark period. Within two weeks, inoculated shoots changed colour from green to dark brown and exhibited dark necroses under the bark; after one month inoculated plants declined, while controls remained symptomless. The pathogen was reisolated from the inoculated plants with 100 % re-isolation rate, and its identity confirmed by sequencing ITS region. The experiment was repeated. Neofusicoccum parvum causing dieback of highbush blueberry was already reported from Australia, California, Chile, China, Italy, Mexico, Portugal and Uruguay (Rossman et al. 2023). Pecenka et al. (2021) reported a presence of another pathogen - Lasiodiplodia theobromae (Pat.) Griffon & Maubl. from the same plantation. This suggests that stem blight and dieback of highbush blueberry is caused by more than one Botryosphaeriaceae spp. as it was previously proved by Xu et al. (2015). To the best of our knowledge, this is the first report of stem blight and dieback of highbush blueberry caused by N. parvum in the Czech Republic.

3.
Front Microbiol ; 13: 1007988, 2022.
Article En | MEDLINE | ID: mdl-36386705

The seed-borne bacterium Xanthomonas campestris pv. campestris (Xcc) as a causal organism of black rot disease remains the most serious bacterial problem of agricultural production of cruciferous plants worldwide. The eradication of a primary inoculum originating in seeds is available, but no treatment is totally effective. With the threat of developing chemical resistance and increasing pressure for sustainable disease management, biocontrol methods represent one of the main strategies currently applied in agriculture. Natural antimicrobials, including essential oils, are promising tools in disease management with low risks of environmental pollution and impact on human health. Thyme and clove essential oils were demonstrated to be highly effective in Xanthomonas studies in vitro; therefore, their application in black rot control was evaluated in this study. From five phenolic substances originating from thyme and clove essential oils (carvacrol, eugenol, linalool, p-cymene and thymol), the most promising in vitro results were observed with carvacrol, for which 0.0195% led to the death of all Xcc cells in 30 min. Moreover, a synergistic antibacterial effect of carvacrol and thymol solutions decreased the minimal inhibition concentration to 0.0049% and 0.0195% for carvacrol and thymol, respectively. Using the quadruple bactericidal values, the complete elimination of Xcc from the surface of infested cabbage seeds was obtained for both carvacrol and thymol solutions and their combined mixture at 2 MIC value. The elimination of bacterial infection from germinated cabbage plants was observed for both plate counting and quantitative real-time PCR methods. We also evaluated the effect of the application of phenolic treatment on the seed germination and germinated plants. Our results suggest a high potential of the application of carvacrol and thymol in vegetable seed production, specifically for cabbage, thus representing a suitable alternative to cupric derivatives.

4.
Plants (Basel) ; 11(18)2022 Sep 15.
Article En | MEDLINE | ID: mdl-36145807

Nanotechnologies have received tremendous attention since their discovery. The current studies show a high application potential of nanoparticles for plant treatments, where the general properties of nanoparticles such as their lower concentrations for an appropriate effects, the gradual release of nanoparticle-based nutrients or their antimicrobial effect are especially useful. The presented review, after the general introduction, analyzes the mechanisms that are described so far in the uptake and movement of nanoparticles in plants. The following part evaluates the available literature on the application of nanoparticles in the selective growth stage, namely, it compares the observed effect that they have when they are applied to seeds (nanopriming), to seedlings or adult plants. Based on the research that has been carried out, it is evident that the most common beneficial effects of nanopriming are the improved parameters for seed germination, the reduced contamination by plant pathogens and the higher stress tolerance that they generate. In the case of plant treatments, the most common applications are for the purpose of generating protection against plant pathogens, but better growth and better tolerance to stresses are also frequently observed. Hypotheses explaining these observed effects were also mapped, where, e.g., the influence that they have on photosynthesis parameters is described as a frequent growth-improving factor. From the consortium of the used nanoparticles, those that were most frequently applied included the principal components that were derived from zinc, iron, copper and silver. This observation implies that the beneficial effect that nanoparticles have is not necessarily based on the nutritional supply that comes from the used metal ions, as they can induce these beneficial physiological changes in the treated cells by other means. Finally, a critical evaluation of the strengths and weaknesses of the wider use of nanoparticles in practice is presented.

5.
Genes (Basel) ; 13(2)2022 02 14.
Article En | MEDLINE | ID: mdl-35205390

The use of high-throughput small RNA sequencing is well established as a technique to unveil the miRNAs in various tissues. The miRNA profiles are different between infected and non-infected tissues. We compare the SARS-CoV-2 positive and SARS-CoV-2 negative RNA samples extracted from human nasopharynx tissue samples to show different miRNA profiles. We explored differentially expressed miRNAs in response to SARS-CoV-2 in the RNA extracted from nasopharynx tissues of 10 SARS-CoV-2-positive and 10 SARS-CoV-2-negative patients. miRNAs were identified by small RNA sequencing, and the expression levels of selected miRNAs were validated by real-time RT-PCR. We identified 943 conserved miRNAs, likely generated through posttranscriptional modifications. The identified miRNAs were expressed in both RNA groups, NegS and PosS: miR-148a, miR-21, miR-34c, miR-34b, and miR-342. The most differentially expressed miRNA was miR-21, which is likely closely linked to the presence of SARS-CoV-2 in nasopharynx tissues. Our results contribute to further understanding the role of miRNAs in SARS-CoV-2 pathogenesis, which may be crucial for understanding disease symptom development in humans.


MicroRNAs/metabolism , Nasopharynx/metabolism , SARS-CoV-2/physiology , COVID-19/pathology , COVID-19/virology , Down-Regulation , High-Throughput Nucleotide Sequencing , Humans , MicroRNAs/chemistry , Nasopharynx/virology , Principal Component Analysis , RNA, Viral/metabolism , Real-Time Polymerase Chain Reaction , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Sequence Analysis, RNA , Transcriptome , Up-Regulation
6.
World J Microbiol Biotechnol ; 38(1): 16, 2021 Dec 13.
Article En | MEDLINE | ID: mdl-34897563

The use of halotolerant beneficial plant-growth-promoting (PGP) bacteria is considered as a promising eco-friendly approach to improve the salt tolerance of cash crops. One strategy to enhance the possibility of obtaining stress-alleviating bacteria is to screen salt impacted soils. In this study, amongst the 40 endophytic bacteria isolated from the roots of Sahara-inhabiting halophytes Atriplex halimus L. and Lygeum spartum L., 8 showed interesting NaCl tolerance in vitro. Their evaluation, through different tomato plant trials, permitted the isolate IS26 to be distinguished as the most effective seed inoculum for both plant growth promotion and mitigation of salt stress. On the basis of 16S rRNA gene sequence, the isolate was closely related to Stenotrophomonas rhizophila. It was then screened in vitro for multiple PGP traits and the strain-complete genome was sequenced and analysed to further decipher the genomic basis of the putative mechanisms underlying its osmoprotective and plant growth abilities. A remarkable number of genes putatively involved in mechanisms responsible for rhizosphere colonization, plant association, strong competition for nutrients, and the production of important plant growth regulator compounds, such as AIA and spermidine, were highlighted, as were substances protecting against stress, including different osmolytes like trehalose, glucosylglycerol, proline, and glycine betaine. By having genes related to complementary mechanisms of osmosensing, osmoregulation and osmoprotection, the strain confirmed its great capacity to adapt to highly saline environments. Moreover, the presence of various genes potentially related to multiple enzymatic antioxidant processes, able to reduce salt-induced overproduction of ROS, was also detected.


Endophytes/physiology , Plant Development , Plant Roots/microbiology , Poaceae/microbiology , Salt Tolerance , Solanum lycopersicum/growth & development , Solanum lycopersicum/microbiology , Africa, Northern , Amino Acids, Cyclic/metabolism , Endophytes/classification , Host Microbial Interactions , RNA, Ribosomal, 16S , Reactive Oxygen Species/metabolism , Rhizosphere , Salinity , Salt Stress , Salt-Tolerant Plants/microbiology , Sequence Analysis, DNA , Soil Microbiology
7.
Microorganisms ; 9(3)2021 Mar 13.
Article En | MEDLINE | ID: mdl-33805636

Xanthomonas campestris pv. campestris (Xcc) is a bacterium that causes black rot of crucifers. The greatest losses of brassica crop production usually result from seed-borne infection, but carry-over of inoculum in field soil may also be possible. The aim of this study was to monitor persistence of Xcc in field soil in central Europe using a conventional PCR assay with hrpF primers and a two-step nested real-time PCR assay using Zur primers. The work has demonstrated that nested real-time PCR can be used to improve the analytical sensitivity for detection of Xcc in soil compared to conventional PCR, and that Xcc may persist in soil for up to two years following an infected brassica crop in central European climatic conditions.

8.
Genes (Basel) ; 11(9)2020 09 22.
Article En | MEDLINE | ID: mdl-32971929

Grapevine Pinot gris virus (GPGV) is a putative causal agent of grapevine leaf mottling and deformation disease that has been reported worldwide throughout the grapevine-growing regions. Fifty-four grapevines collected from five Algerian grapevine-growing regions were tested for the presence of GPGV in phloem tissues. Eight of the tested grapevines were infected by GPGV. Viromes of two selected Vitis vinifera cv. Sabel grapevines infected by GPGV and showing virus-like symptoms were analyzed by small RNA sequencing. Phylogenetic analyses of the partial coding sequence (cds) of the RNA-dependent RNA polymerase (RdRp) domain showed that all Algerian GPGV isolates were grouped with some already-described asymptomatic isolates. This study provides the first survey of the occurrence of GPGV in Algeria. Moreover, Grapevine fleck virus, Grapevine rupestris stem pitting-associated virus, Grapevine virus B, Grapevine rupestris vein feathering virus, Hop stunt viroid and Grapevine yellow speckle viroid 1 were detected in Algeria for the first time.


Flexiviridae/classification , Flexiviridae/isolation & purification , Plant Diseases/virology , RNA, Small Untranslated/genetics , RNA, Viral/genetics , Viral Proteins/genetics , Vitis/virology , Flexiviridae/genetics , High-Throughput Nucleotide Sequencing , Phylogeny , RNA, Viral/analysis
9.
PLoS One ; 15(5): e0232448, 2020.
Article En | MEDLINE | ID: mdl-32433708

Several Botryosphaeriaceae species are known to occur worldwide, causing dieback, canker and fruit rot on various hosts. Surveys conducted in ten commercial citrus orchards in the northern region of Algeria revealed five species of Botryosphaeriaceae belonging to three genera associated with diseased trees. Morphological and cultural characteristics as well as phylogenetic analyses of the internal transcribed spacer (ITS) region and the translation elongation factor 1-alpha (tef1-α) identified Diplodia mutila, Diplodia seriata, Dothiorella viticola, Lasiodiplodia mediterranea and a novel species which is here described as Lasiodiplodia mithidjana sp. nov.. Of these, L. mithidjana (14.1% of the samples) and L. mediterranea (13% of the samples) were the most widespread and abundant species. Pathogenicity tests revealed that L. mediterranea and D. seriata were the most aggressive species on citrus shoots. This study highlights the importance of Botryosphaeriaceae species as agents of canker and dieback of citrus trees in Algeria.


Ascomycota/pathogenicity , Citrus sinensis/microbiology , Plant Diseases/microbiology , Algeria , Ascomycota/classification , Ascomycota/genetics , DNA, Fungal/genetics , Phylogeny , Species Specificity , Virulence
10.
PLoS One ; 15(1): e0227559, 2020.
Article En | MEDLINE | ID: mdl-31910230

A multiplex real-time PCR method based on fluorescent TaqMan® probes was developed for the simultaneous detection of the tomato pathogenic bacteria Clavibacter michiganensis subsp. michiganensis, Pseudomonas syringae pv. tomato and bacterial spot-causing xanthomonads. The specificity of the multiplex assay was validated on 44 bacterial strains, including 32 target pathogen strains as well as closely related species and nontarget tomato pathogenic bacteria. The designed multiplex real-time PCR showed high sensitivity when positive amplification was observed for one pg of bacterial DNA in the cases of Clavibacter michiganensis subsp. michiganensis and Pseudomonas syringae pv. tomato bacteria and 100 pg for bacterial spot-causing xanthomonads. The reliability of the developed multiplex real-time PCR assay for in planta detection was verified by recognition of the target pathogens in 18 tomato plants artificially inoculated by each of the target bacteria and tomato samples from production greenhouses.


Actinobacteria/isolation & purification , Pseudomonas syringae/isolation & purification , Real-Time Polymerase Chain Reaction , Solanum lycopersicum/microbiology , Xanthomonas/isolation & purification , Actinobacteria/genetics , Actinobacteria/physiology , Clavibacter , Environment, Controlled , Solanum lycopersicum/growth & development , Pseudomonas syringae/genetics , Pseudomonas syringae/physiology , Xanthomonas/genetics , Xanthomonas/physiology
11.
Genes (Basel) ; 10(11)2019 11 07.
Article En | MEDLINE | ID: mdl-31703418

Diaporthe species are important pathogens, saprobes, and endophytes on grapevines. Several species are known, either as agents of pre- or post-harvest infections, as causal agents of many relevant diseases, including swelling arm, trunk cankers, leaf spots, root and fruit rots, wilts, and cane bleaching. A growing body of evidence exists that a class of small non-coding endogenous RNAs, known as microRNAs (miRNAs), play an important role in post-transcriptional gene regulation, during plant development and responses to biotic and abiotic stresses. In this study, we explored differentially expressed miRNAs in response to Diaporthe eres and Diaporthe bohemiae infection in Vitis vinifera cv. Chardonnay under in vitro conditions. We used computational methods to predict putative miRNA targets in order to explore the involvement of possible pathogen response pathways. We identified 136 known and 41 new miRNA sequence variants, likely generated through post-transcriptional modifications. In the Diaporthe eres treatment, 61 known and 17 new miRNAs were identified while in the Diaporthe bohemiae treatment, 101 known and 21 new miRNAs were revealed. Our results contribute to further understanding the role miRNAs play during plant pathogenesis, which is possibly crucial in understanding disease symptom development in grapevines infected by D. eres and D. bohemiae.


Ascomycota/pathogenicity , Gene Expression Regulation, Plant , MicroRNAs/genetics , Vitis/genetics , MicroRNAs/metabolism , Transcriptome , Vitis/microbiology
12.
PLoS One ; 13(4): e0195835, 2018.
Article En | MEDLINE | ID: mdl-29668749

p73 is a member of the p53 protein family and has essential functions in several signaling pathways involved in development, differentiation, DNA damage responses and cancer. As a transcription factor, p73 achieves these functions by binding to consensus DNA sequences and p73 shares at least partial target DNA binding sequence specificity with p53. Transcriptional activation by p73 has been demonstrated for more than fifty p53 targets in yeast and/or human cancer cell lines. It has also been shown previously that p53 binding to DNA is strongly dependent on DNA topology and the presence of inverted repeats that can form DNA cruciforms, but whether p73 transcriptional activity has similar dependence has not been investigated. Therefore, we evaluated p73 binding to a set of p53-response elements with identical theoretical binding affinity in their linear state, but different probabilities to form extra helical structures. We show by a yeast-based assay that transactivation in vivo correlated more with the relative propensity of a response element to form cruciforms than to its expected in vitro DNA binding affinity. Structural features of p73 target sites are therefore likely to be an important determinant of its transactivation function.


Binding Sites , Inverted Repeat Sequences , Tumor Protein p73/metabolism , Base Sequence , Humans , Nucleic Acid Conformation , Protein Binding , Transcriptional Activation , Tumor Protein p73/chemistry , Tumor Protein p73/genetics , Tumor Suppressor Protein p53/metabolism , Yeasts/genetics , Yeasts/metabolism
13.
Bioinformatics ; 34(7): 1081-1085, 2018 04 01.
Article En | MEDLINE | ID: mdl-29126205

Motivation: The NCBI database contains mitochondrial DNA (mtDNA) genomes from numerous species. We investigated the presence and locations of inverted repeat sequences (IRs) in these mtDNA sequences, which are known to be important for regulating nuclear genomes. Results: IRs were identified in mtDNA in all species. IR lengths and frequencies correlate with evolutionary age and the greatest variability was detected in subgroups of plants and fungi and the lowest variability in mammals. IR presence is non-random and evolutionary favoured. The frequency of IRs generally decreased with IR length, but not for IRs 24 or 30 bp long, which are 1.5 times more abundant. IRs are enriched in sequences from the replication origin, followed by D-loop, stem-loop and miscellaneous sequences, pointing to the importance of IRs in regulatory regions of mitochondrial DNA. Availability and implementation: Data were produced using Palindrome analyser, freely available on the web at http://bioinformatics.ibp.cz. Contact: vaclav@ibp.cz. Supplementary information: Supplementary data are available at Bioinformatics online.


Evolution, Molecular , Genome, Mitochondrial , Genomics , Inverted Repeat Sequences , Eukaryota/genetics , Sequence Analysis, DNA
14.
Biochem Biophys Res Commun ; 483(1): 516-521, 2017 01 29.
Article En | MEDLINE | ID: mdl-28007599

The TP53 gene is the most frequently mutated gene in human cancer and p53 protein plays a crucial role in gene expression and cancer protection. Its role is manifested by interactions with other proteins and DNA. p53 is a transcription factor that binds to DNA response elements (REs). Due to the palindromic nature of the consensus binding site, several p53-REs have the potential to form cruciform structures. However, the influence of cruciform formation on the activity of p53-REs has not been evaluated. Therefore, we prepared sets of p53-REs with identical theoretical binding affinity in their linear state, but different probabilities to form extra helical structures, for in vitro and in vivo analyses. Then we evaluated the presence of cruciform structures when inserted into plasmid DNA and employed a yeast-based assay to measure transactivation potential of these p53-REs cloned at a chromosomal locus in isogenic strains. We show that transactivation in vivo correlated more with relative propensity of an RE to form cruciforms than to its predicted in vitro DNA binding affinity for wild type p53. Structural features of p53-REs could therefore be an important determinant of p53 transactivation function.


Inverted Repeat Sequences , Response Elements , Tumor Suppressor Protein p53/chemistry , Tumor Suppressor Protein p53/genetics , Chromatin/genetics , Computer Simulation , Mutation , Transcriptional Activation , Tumor Suppressor Protein p53/metabolism , Yeasts/genetics
15.
PLoS One ; 11(10): e0165749, 2016.
Article En | MEDLINE | ID: mdl-27792769

The appearance of somaclonal variability induced by in vitro cultivation is relatively frequent and can, in some cases, provide a valuable source of new genetic variation for crop improvement. The cause of this phenomenon remains unknown; however, there are a number of reports suggesting that epigenetics, including DNA methylations, are an important factor. In addition to the non-heritable DNA methylation changes caused by transient and reversible stress-responsive gene regulation, recent evidence supports the existence of mitotically and meiotically inherited changes. The induction of phenotypes via stable DNA methylation changes has occasionally great economical value; however, very little is known about the genetic or molecular basis of these phenotypes. We used a novel approach consisting of a standard MSAP analysis followed by deep amplicon sequencing to better understand this phenomenon. Our models included two wheat genotypes, and their somaclones induced using in vitro cultivation with a changed heritable phenotype (shortened stem height and silenced high molecular weight glutenin). Using this novel procedure, we obtained information on the dissimilarity of DNA methylation landscapes between the standard cultivar and its respective somaclones, and we extracted the sequences and genome regions that were differentially methylated between subjects. Transposable elements were identified as the most likely factor for producing changes in somaclone properties. In summary, the novel approach of combining MSAP and NGS is relatively easy and widely applicable, which is a rather unique feature compared with the currently available techniques in the epigenetics field.


DNA Methylation/genetics , High-Throughput Nucleotide Sequencing , Mutation , Polymorphism, Genetic , Triticum/genetics , DNA Transposable Elements/genetics , DNA, Plant/genetics
16.
PLoS One ; 10(5): e0126638, 2015.
Article En | MEDLINE | ID: mdl-25973746

There is relatively little information concerning long-term alterations in DNA methylation following exposure of plants to environmental stress. As little is known about the ratio of non-heritable changes in DNA methylation and mitotically-inherited methylation changes, dynamics and reversibility of the DNA methylation states were investigated in grapevine plants (Vitis vinifera) stressed by in vitro cultivation. It was observed that significant part of induced epigenetic changes could be repeatedly established by exposure to particular planting and stress conditions. However, once stress conditions were discontinued, many methylation changes gradually reverted and plants returned to epigenetic states similar to those of maternal plants. In fact, in the period of one to three years after in vitro cultivation it was difficult to distinguish the epigenetic states of somaclones and maternal plants. Forty percent of the observed epigenetic changes disappeared within a year subsequent to termination of stress conditions ending and these probably reflect changes caused by transient and reversible stress-responsive acclimation mechanisms. However, sixty percent of DNA methylation diversity remained after 1 year and probably represents mitotically-inherited epimutations. Sequencing of regions remaining variable between maternal and regenerant plants revealed that 29.3% of sequences corresponded to non-coding regions of grapevine genome. Eight sequences (19.5%) corresponded to previously identified genes and the remaining ones (51.2%) were annotated as "hypothetical proteins" based on their similarity to genes described in other species, including genes likely to undergo methylation changes following exposure to stress (V. vinifera gypsy-type retrotransposon Gret1, auxin-responsive transcription factor 6-like, SAM-dependent carboxyl methyltransferase).


DNA Methylation , DNA, Plant/analysis , Stress, Physiological , Vitis/genetics , Chromatography, High Pressure Liquid , DNA, Plant/isolation & purification , Electrophoresis, Capillary , Epigenesis, Genetic , Plant Cells/metabolism , Sequence Analysis, DNA , Temperature , Vitis/growth & development
17.
J Biomol Struct Dyn ; 30(4): 371-8, 2012.
Article En | MEDLINE | ID: mdl-22856523

The 14-3-3 protein family is a highly conserved and widely distributed group of proteins consisting of multiple isoforms in eukaryotes. Ubiquitously expressed, 14-3-3 proteins play key roles in DNA replication, cell cycle regulation, and apoptosis. The function of 14-3-3 proteins is mediated by interaction with a large number of other proteins and with DNA. It has been demonstrated that 14-3-3γ protein binds strongly to cruciform structures and is crucial for initiating replication. In this study, we analyzed DNA binding properties of the 14-3-3γ isoform to linear and supercoiled DNA. We demonstrate that 14-3-3γ protein binds strongly to long DNA targets, as evidenced by electrophoretic mobility shift assay on agarose gels. Binding of 14-3-3γ to DNA target results in the appearance of blurry, retarded DNA bands. Competition experiments with linear and supercoiled DNA on magnetic beads show very strong preference for supercoiled DNA. We also show by confocal microscopy that 14-3-3 protein in the HCT-116 cell line is co-localized with DNA cruciforms. This implies a role for the 14-3-3γ protein in its binding to local DNA structures which are stabilized by DNA supercoiling.


14-3-3 Proteins/metabolism , DNA, Cruciform/metabolism , DNA, Superhelical/metabolism , 14-3-3 Proteins/genetics , Binding Sites , Binding, Competitive , Cloning, Molecular , DNA Replication/genetics , DNA, Cruciform/genetics , DNA, Superhelical/genetics , Electrophoretic Mobility Shift Assay , Escherichia coli/genetics , HCT116 Cells , Humans , Plasmids/genetics , Protein Binding , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
...