Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Intervalo de año de publicación
1.
Clinics (Sao Paulo) ; 78: 100242, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37480642

RESUMEN

BACKGROUND: The 6-OHDA nigro-striatal lesion model has already been related to disorders in the excitability and synchronicity of neural networks and variation in the expression of transmembrane proteins that control intra and extracellular ionic concentrations, such as cation-chloride cotransporters (NKCC1 and KCC2) and Na+/K+-ATPase and, also, to the glial proliferation after injury. All these non-synaptic mechanisms have already been related to neuronal injury and hyper-synchronism processes. OBJECTIVE: The main objective of this study is to verify whether mechanisms not directly related to synaptic neurotransmission could be involved in the modulation of nigrostriatal pathways. METHODS: Male Wistar rats, 3 months old, were submitted to a unilateral injection of 24 µg of 6-OHDA, in the striatum (n = 8). The animals in the Control group (n = 8) were submitted to the same protocol, with the replacement of 6-OHDA by 0.9% saline. The analysis by optical densitometry was performed to quantify the immunoreactivity intensity of GFAP, NKCC1, KCC2, Na+/K+-ATPase, TH and Cx36. RESULTS: The 6-OHDA induced lesions in the striatum, were not followed by changes in the expression cation-chloride cotransporters and Na+/K+-ATPase, but with astrocytic reactivity in the lesioned and adjacent regions of the nigrostriatal. Moreover, the dopaminergic degeneration caused by 6-OHDA is followed by changes in the expression of connexin-36. CONCLUSIONS: The use of the GJ blockers directly along the nigrostriatal pathways to control PD motor symptoms is conjectured. Electrophysiology of the striatum and the substantia nigra, to verify changes in neuronal synchronism, comparing brain slices of control animals and experimental models of PD, is needed.


Asunto(s)
Enfermedad de Parkinson , Simportadores , Ratas , Animales , Masculino , Oxidopamina , Ratas Wistar , Cloruros , Modelos Animales de Enfermedad , Adenosina Trifosfatasas
2.
Clinics (Sao Paulo) ; 78: 100159, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36774732

RESUMEN

OBJECTIVE: Amygdala has been demonstrated as one of the brain sites involved in the control of cardiorespiratory functioning. The structural and physiological alterations induced by epileptic activity are also present in the amygdala and reflect functional changes that may be directly associated with a sudden unexpected death. Seizures are always associated with neuronal damage and changes in the expression of cation-chloride cotransporters and Na/K pumps. In this study, the authors aimed to investigate if these changes are present in the amygdala after induction of status epilepticus with pilocarpine, which may be directly correlated with Sudden Unexpected Death in Epilepsy (SUDEP). METHODS: Pilocarpine-treated wistar rats 60 days after Status Epilepticus (SE) were compared with control rats. Amygdala nuclei of brain slices immunostained for NKCC1, KCC2 and α1-Na+/K+-ATPase, were quantified by optical densitometry. RESULTS: The amygdaloid complex of the animals submitted to SE had no significant difference in the NKCC1 immunoreactivity, but KCC2 immunoreactivity reduced drastically in the peri-somatic sites and in the dendritic-like processes. The α1-Na+/K+-ATPase peri-somatic immunoreactivity was intense in the rats submitted to pilocarpine SE when compared with control rats. The pilocarpine SE also promoted intense GFAP staining, specifically in the basolateral and baso-medial nuclei with astrogliosis and cellular debris deposition. INTERPRETATION: The findings revealed that SE induces lesion changes in the expression of KCC2 and α1-Na+/K+-ATPase meaning intense change in the chloride regulation in the amygdaloid complex. These changes may contribute to cardiorespiratory dysfunction leading to SUDEP.


Asunto(s)
Amígdala del Cerebelo , Estado Epiléptico , Muerte Súbita e Inesperada en la Epilepsia , Animales , Ratas , Adenosina Trifosfatasas/metabolismo , Amígdala del Cerebelo/patología , Cloruros/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Hipocampo/patología , Homeostasis , Pilocarpina/efectos adversos , Ratas Wistar , Estado Epiléptico/inducido químicamente , Estado Epiléptico/patología , Muerte Súbita e Inesperada en la Epilepsia/patología , Simportadores/metabolismo
3.
Clinics ; 78: 100242, 2023. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1506005

RESUMEN

Abstract Background The 6-OHDA nigro-striatal lesion model has already been related to disorders in the excitability and synchronicity of neural networks and variation in the expression of transmembrane proteins that control intra and extracellular ionic concentrations, such as cation-chloride cotransporters (NKCC1 and KCC2) and Na+/K+-ATPase and, also, to the glial proliferation after injury. All these non-synaptic mechanisms have already been related to neuronal injury and hyper-synchronism processes. Objective The main objective of this study is to verify whether mechanisms not directly related to synaptic neurotransmission could be involved in the modulation of nigrostriatal pathways. Methods Male Wistar rats, 3 months old, were submitted to a unilateral injection of 24 µg of 6-OHDA, in the striatum (n= 8). The animals in the Control group (n= 8) were submitted to the same protocol, with the replacement of 6-OHDA by 0.9% saline. The analysis by optical densitometry was performed to quantify the immunoreactivity intensity of GFAP, NKCC1, KCC2, Na+/K+-ATPase, TH and Cx36. Results The 6-OHDA induced lesions in the striatum, were not followed by changes in the expression cation-chloride cotransporters and Na+/K+-ATPase, but with astrocytic reactivity in the lesioned and adjacent regions of the nigrostriatal. Moreover, the dopaminergic degeneration caused by 6-OHDA is followed by changes in the expression of connexin-36. Conclusions The use of the GJ blockers directly along the nigrostriatal pathways to control PD motor symptoms is conjectured. Electrophysiology of the striatum and the substantia nigra, to verify changes in neuronal synchronism, comparing brain slices of control animals and experimental models of PD, is needed.

4.
Clinics ; 78: 100159, 2023. graf
Artículo en Inglés | LILACS-Express | LILACS | ID: biblio-1421258

RESUMEN

Objective: Amygdala has been demonstrated as one of the brain sites involved in the control of cardiorespiratory functioning. The structural and physiological alterations induced by epileptic activity are also present in the amygdala and reflect functional changes that may be directly associated with a sudden unexpected death. Seizures are always associated with neuronal damage and changes in the expression of cation-chloride cotransporters and Na/K pumps. In this study, the authors aimed to investigate if these changes are present in the amygdala after induction of status epilepticus with pilocarpine, which may be directly correlated with Sudden Unexpected Death in Epilepsy (SUDEP). Methods: Pilocarpine-treated wistar rats 60 days after Status Epilepticus (SE) were compared with control rats. Amygdala nuclei of brain slices immunostained for NKCC1, KCC2 and α1-Na+/K+-ATPase, were quantified by optical densitometry. Results: The amygdaloid complex of the animals submitted to SE had no significant difference in the NKCC1 immunoreactivity, but KCC2 immunoreactivity reduced drastically in the peri-somatic sites and in the dendritic-like processes. The α1-Na+/K+-ATPase peri-somatic immunoreactivity was intense in the rats submitted to pilocarpine SE when compared with control rats. The pilocarpine SE also promoted intense GFAP staining, specifically in the basolateral and baso-medial nuclei with astrogliosis and cellular debris deposition. Interpretation: The findings revealed that SE induces lesion changes in the expression of KCC2 and α1-Na + /K + -ATPase meaning intense change in the chloride regulation in the amygdaloid complex. These changes may contribute to cardiorespiratory dysfunction leading to SUDEP.

5.
Springerplus ; 2: 430, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24040585

RESUMEN

The appearance of new antibiotic-resistant bacteria is a societal problem that requires the development of new alternative treatments. Therefore, this work evaluated the antibacterial activity of ethanolic (EHI), dichloromethanic (EDI) and hexanic (EHE) extracts from Aristolochia cymbifera stems and the combination of these extracts with an antimicrobial drug to develop a new antibacterial therapy. The EDI, EHE and EHI extracts were obtained by maceration using three different solvents. The minimal inhibitory concentrations (MIC) of these extracts were determined using the microdilution test to determine the antibacterial potential of these extracts and their combination with streptomycin against Staphylococcus aureus, Bacillus cereus, Klebsiella pneumoniae and Shigella flexneri. The extract dose leading to the cytotoxicity of 50% of the cells (CC50) was evaluated using mammalian cells MA104 and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) colorimetric assay. The extracts had a MIC under 500 mg/L and a CC50 lower than 50 mg/L. The antibiotic/extract proportion influenced the antibacterial activity of the mixtures, and the proportion that optimized the antibacterial activity of streptomycin was a mixture that contained 75 percent of extract. This composition included less than 6.5 mg/L of extract and 2.5 mg/L of streptomycin and has potential as a new antibacterial therapy.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...