Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798523

RESUMEN

Nucleoside-modified mRNA vaccines elicit protective antibodies through their ability to promote T follicular helper (Tfh) cells. The lipid nanoparticle (LNP) component of mRNA vaccines possesses inherent adjuvant activity. However, to what extent the nucleoside-modified mRNA can be sensed and contribute to Tfh cell responses remains largely undefined. Herein, we deconvoluted the signals induced by LNP and mRNA that instruct dendritic cells (DCs) to promote Tfh cell differentiation. We demonstrated that the nucleoside-modified mRNA drives the production of type I interferons that act on DCs to induce their maturation and the induction of Th1-biased Tfh responses. Conversely, LNP favors the acquisition of a Tfh cell-inducing program in DCs, a stronger Th2 polarization in Tfh cells, and allows for rapid mRNA translation by DCs within the draining lymph node. Our work unravels distinct adjuvant features of mRNA and LNP necessary for the induction of Tfh cells, with implications for vaccine design.

2.
bioRxiv ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38352546

RESUMEN

Metabolic byproducts of the intestinal microbiota are crucial in maintaining host immune tone and shaping inter-species ecological dynamics. Among these metabolites, succinate is a driver of tuft cell (TC) differentiation and consequent type 2 immunity-dependent protection against invading parasites in the small intestine. Succinate is also a growth enhancer of the nosocomial pathogen Clostridioides difficile in the large intestine. To date, no research has shown the role of succinate in modulating TC dynamics in the large intestine, or the relevance of this immune pathway to C. difficile pathophysiology. Here we reveal the existence of a three-way circuit between commensal microbes, C. difficile and host epithelial cells which centers around succinate. Through selective microbiota depletion experiments we demonstrate higher levels of type 2 cytokines leading to expansion of TCs in the colon. We then demonstrate the causal role of the microbiome in modulating colonic TC abundance and subsequent type 2 cytokine induction using rational supplementation experiments with fecal transplants and microbial consortia of succinate-producing bacteria. We show that administration of a succinate-deficient Bacteroides thetaiotaomicron knockout (Δfrd) significantly reduces the enhanced type 2 immunity in mono-colonized mice. Finally, we demonstrate that mice prophylactically administered with the consortium of succinate-producing bacteria show reduced C. difficile-induced morbidity and mortality compared to mice administered with heat-killed bacteria or the vehicle. This effect is reduced in a partial tuft cell knockout mouse, Pou2f3+/-, and nullified in the tuft cell knockout mouse, Pou2f3-/-, confirming that the observed protection occurs via the TC pathway. Succinate is an intermediary metabolite of the production of short-chain fatty acids, and its concentration often increases during dysbiosis. The first barrier to enteric pathogens alike is the intestinal epithelial barrier, and host maintenance and strengthening of barrier integrity is vital to homeostasis. Considering our data, we propose that activation of TC by the microbiota-produced succinate in the colon is a mechanism evolved by the host to counterbalance microbiome-derived cues that facilitate invasion by intestinal pathogens.

3.
bioRxiv ; 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36993524

RESUMEN

Lymphoid tissue inducer (LTi) cells develop during intrauterine life and rely on developmental programs to initiate the organogenesis of secondary lymphoid organs (SLOs). This evolutionary conserved process endows the fetus with the ability to orchestrate the immune response after birth and to react to the triggers present in the environment. While it is established that LTi function can be shaped by maternal-derived cues and is critical to prepare the neonate with a functional scaffold to mount immune response, the cellular mechanisms that control anatomically distinct SLO organogenesis remain unclear. We discovered that LTi cells forming Peyer's patches, gut-specific SLOs, require the coordinated action of two migratory G protein coupled receptors (GPCR) GPR183 and CCR6. These two GPCRs are uniformly expressed on LTi cells across SLOs, but their deficiency specifically impacts Peyer's patch formation, even when restricted to fetal window. The unique CCR6 ligand is CCL20, while the ligand for GPR183 is the cholesterol metabolite 7α,25-Dihydroxycholesterol (7α,25-HC), whose production is controlled by the enzyme cholesterol 25-hydroxylase (CH25H). We identified a fetal stromal cell subset that expresses CH25H and attracts LTi cells in the nascent Peyer's patch anlagen. GPR183 ligand concentration can be modulated by the cholesterol content in the maternal diet and impacts LTi cell maturation in vitro and in vivo, highlighting a link between maternal nutrients and intestinal SLO organogenesis. Our findings revealed that in the fetal intestine, cholesterol metabolite sensing by GPR183 in LTi cells for Peyer's patch formation is dominant in the duodenum, the site of cholesterol absorption in the adult. This anatomic requirement suggests that embryonic, long-lived non-hematopoietic cells might exploit adult metabolic functions to ensure highly specialized SLO development in utero.

4.
Nat Immunol ; 24(3): 531-544, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36658240

RESUMEN

Immunoglobulin A (IgA) secretion by plasma cells, terminally differentiated B cells residing in the intestinal lamina propria, assures microbiome homeostasis and protects the host against enteric infections. Exposure to diet-derived and commensal-derived signals provides immune cells with organizing cues that instruct their effector function and dynamically shape intestinal immune responses at the mucosal barrier. Recent data have described metabolic and microbial inputs controlling T cell and innate lymphoid cell activation in the gut; however, whether IgA-secreting lamina propria plasma cells are tuned by local stimuli is completely unknown. Although antibody secretion is considered to be imprinted during B cell differentiation and therefore largely unaffected by environmental changes, a rapid modulation of IgA levels in response to intestinal fluctuations might be beneficial to the host. In the present study, we showed that dietary cholesterol absorption and commensal recognition by duodenal intestinal epithelial cells lead to the production of oxysterols, evolutionarily conserved lipids with immunomodulatory functions. Using conditional cholesterol 25-hydroxylase deleter mouse line we demonstrated that 7α,25-dihydroxycholesterol from epithelial cells is critical to restrain IgA secretion against commensal- and pathogen-derived antigens in the gut. Intestinal plasma cells sense oxysterols via the chemoattractant receptor GPR183 and couple their tissue positioning with IgA secretion. Our findings revealed a new mechanism linking dietary cholesterol and humoral immune responses centered around plasma cell localization for efficient mucosal protection.


Asunto(s)
Inmunidad Innata , Células Plasmáticas , Animales , Ratones , Colesterol en la Dieta , Células Epiteliales , Inmunoglobulina A , Mucosa Intestinal , Receptores Acoplados a Proteínas G , Intestinos
5.
Immunity ; 54(10): 2273-2287.e6, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34644558

RESUMEN

Diets high in cholesterol alter intestinal immunity. Here, we examined how the cholesterol metabolite 25-hydroxycholesterol (25-HC) impacts the intestinal B cell response. Mice lacking cholesterol 25-hydroxylase (CH25H), the enzyme generating 25-HC, had higher frequencies of immunoglobulin A (IgA)-secreting antigen-specific B cells upon immunization or infection. 25-HC did not affect class-switch recombination but rather restrained plasma cell (PC) differentiation. 25-HC was produced by follicular dendritic cells and increased in response to dietary cholesterol. Mechanistically, 25-HC restricted activation of the sterol-sensing transcription factor SREBP2, thereby regulating B cell cholesterol biosynthesis. Ectopic expression of SREBP2 in germinal center B cells induced rapid PC differentiation, whereas SREBP2 deficiency reduced PC output in vitro and in vivo. High-cholesterol diet impaired, whereas Ch25h deficiency enhanced, the IgA response against Salmonella and the resulting protection from systemic bacterial dissemination. Thus, a 25-HC-SREBP2 axis shapes the humoral response at the intestinal barrier, providing insight into the effect of high dietary cholesterol in intestinal immunity.


Asunto(s)
Diferenciación Celular/inmunología , Hidroxicolesteroles/metabolismo , Inmunoglobulina A/inmunología , Células Plasmáticas/inmunología , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Animales , Colesterol en la Dieta/inmunología , Colesterol en la Dieta/metabolismo , Hidroxicolesteroles/inmunología , Inmunoglobulina A/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Ratones , Ganglios Linfáticos Agregados/inmunología , Ganglios Linfáticos Agregados/metabolismo , Células Plasmáticas/metabolismo
6.
Immunity ; 54(6): 1137-1153.e8, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-34051146

RESUMEN

Alterations in the cGAS-STING DNA-sensing pathway affect intestinal homeostasis. We sought to delineate the functional role of STING in intestinal inflammation. Increased STING expression was a feature of intestinal inflammation in mice with colitis and in humans afflicted with inflammatory bowel disease. Mice bearing an allele rendering STING constitutively active exhibited spontaneous colitis and dysbiosis, as well as progressive chronic intestinal inflammation and fibrosis. Bone marrow chimera experiments revealed STING accumulation in intestinal macrophages and monocytes as the initial driver of inflammation. Depletion of Gram-negative bacteria prevented STING accumulation in these cells and alleviated intestinal inflammation. STING accumulation occurred at the protein rather than transcript level, suggesting post-translational stabilization. We found that STING was ubiquitinated in myeloid cells, and this K63-linked ubiquitination could be elicited by bacterial products, including cyclic di-GMP. Our findings suggest a positive feedback loop wherein dysbiosis foments the accumulation of STING in intestinal myeloid cells, driving intestinal inflammation.


Asunto(s)
Colitis/inmunología , Disbiosis/inmunología , Inmunidad Innata/inmunología , Proteínas de la Membrana/inmunología , Células Mieloides/inmunología , Ubiquitinación/inmunología , Animales , Estudios de Casos y Controles , Femenino , Humanos , Inflamación/inmunología , Intestinos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL , Monocitos/inmunología
7.
Cell Death Dis ; 10(4): 320, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30975981

RESUMEN

Increasing evidence supports the involvement of IBTK in cell survival and tumor growth. Previously, we have shown that IBTK RNA interference affects the wide genome expression and RNA splicing in cell-type specific manner. Further, the expression of IBTK gene progressively increases from indolent to aggressive stage of chronic lymphocytic leukemia and decreases in disease remission after therapy. However, the role of IBTK in tumorigenesis has not been elucidated. Here, we report that loss of the murine Ibtk gene raises survival and delays tumor onset in Eµ-myc transgenic mice, a preclinical model of Myc-driven lymphoma. In particular, we found that the number of pre-cancerous B cells of bone marrow and spleen is reduced in Ibtk-/-Eµ-myc mice owing to impaired viability and increased apoptosis, as measured by Annexin V binding, Caspase 3/7 cleavage assays and cell cycle profile analysis. Instead, the proliferation rate of pre-cancerous B cells is unaffected by the loss of Ibtk. We observed a direct correlation between Ibtk and myc expression and demonstrated a Myc-dependent regulation of Ibtk expression in murine B cells, human hematopoietic and nonhematopoietic cell lines by analysis of ChIP-seq data. By tet-repressible Myc system, we confirmed a Myc-dependent expression of IBTK in human B cells. Further, we showed that Ibtk loss affected the main apoptotic pathways dependent on Myc overexpression in pre-cancerous Eµ-myc mice, in particular, MCL-1 and p53. Of note, we found that loss of IBTK impaired cell cycle and increased apoptosis also in a human epithelial cell line, HeLa cells, in Myc-independent manner. Taken together, these results suggest that Ibtk sustains the oncogenic activity of Myc by inhibiting apoptosis of murine pre-cancerous B cells, as a cell-specific mechanism. Our findings could be relevant for the development of IBTK inhibitors sensitizing tumor cells to apoptosis.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Apoptosis/genética , Linfocitos B/metabolismo , Linfoma de Células B/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Linfocitos B/citología , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Puntos de Control del Ciclo Celular/genética , Proliferación Celular/genética , Supervivencia Celular/genética , Células HEK293 , Células HeLa , Humanos , Linfoma de Células B/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Bazo/citología , Bazo/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
8.
Mol Cancer ; 16(1): 159, 2017 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-29029605

RESUMEN

Tumor-derived exosomes (TDEs) play a pivotal role in tumor establishment and progression, and are emerging biomarkers for tumor diagnosis in personalized medicine. To date, there is a lack of efficient technology platforms for exosome isolation and characterization. Multiple myeloma (MM) is an incurable B-cell malignancy due to the rapid development of drug-resistance. MM-released exosomes express the immunoglobulin B-cell receptor (Ig-BCR) of the tumor B-cells, which can be targeted by Idiotype-binding peptides (Id-peptides). In this study, we analyzed the production of MM-released exosomes in the murine 5T33MM multiple myeloma model as biomarkers of tumor growth. To this end, we selected Id-peptides by screening a phage display library using as bait the Ig-BCR expressed by 5T33MM cells. By FACS, the FITC-conjugated Id-peptides detected the MM-released exosomes in the serum of 5T33MM-engrafted mice, levels of which are correlated with tumor progression at an earlier time point compared to serum paraprotein. These results indicate that Id-peptide-based recognition of MM-released exosomes may represent a very sensitive diagnostic approach for clinical evaluation of disease progression.


Asunto(s)
Exosomas/metabolismo , Inmunoglobulina G/metabolismo , Mieloma Múltiple/metabolismo , Células Dendríticas/metabolismo , Citometría de Flujo , Humanos , Idiotipos de Inmunoglobulinas/metabolismo , Receptores de Antígenos de Linfocitos B/metabolismo , Transducción de Señal/fisiología , Células Tumorales Cultivadas
9.
Int J Mol Sci ; 17(11)2016 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-27827994

RESUMEN

The IBTK gene encodes the major protein isoform IBTKα that was recently characterized as substrate receptor of Cul3-dependent E3 ligase, regulating ubiquitination coupled to proteasomal degradation of Pdcd4, an inhibitor of translation. Due to the presence of Ankyrin-BTB-RCC1 domains that mediate several protein-protein interactions, IBTKα could exert expanded regulatory roles, including interaction with transcription regulators. To verify the effects of IBTKα on gene expression, we analyzed HeLa and K562 cell transcriptomes by RNA-Sequencing before and after IBTK knock-down by shRNA transduction. In HeLa cells, 1285 (2.03%) of 63,128 mapped transcripts were differentially expressed in IBTK-shRNA-transduced cells, as compared to cells treated with control-shRNA, with 587 upregulated (45.7%) and 698 downregulated (54.3%) RNAs. In K562 cells, 1959 (3.1%) of 63128 mapped RNAs were differentially expressed in IBTK-shRNA-transduced cells, including 1053 upregulated (53.7%) and 906 downregulated (46.3%). Only 137 transcripts (0.22%) were commonly deregulated by IBTK silencing in both HeLa and K562 cells, indicating that most IBTKα effects on gene expression are cell type-specific. Based on gene ontology classification, the genes responsive to IBTK are involved in different biological processes, including in particular chromatin and nucleosomal organization, gene expression regulation, and cellular traffic and migration. In addition, IBTK RNA interference affected RNA maturation in both cell lines, as shown by the evidence of alternative 3'- and 5'-splicing, mutually exclusive exons, retained introns, and skipped exons. Altogether, these results indicate that IBTK differently modulates gene expression and RNA splicing in HeLa and K562 cells, demonstrating a novel biological role of this protein.


Asunto(s)
Empalme Alternativo , Proteínas Portadoras/genética , Biosíntesis de Proteínas , Transcriptoma , Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Transporte Biológico , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/metabolismo , Movimiento Celular , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular , Células K562 , Nucleosomas/metabolismo , Nucleosomas/ultraestructura , Especificidad de Órganos , Complejo de la Endopetidasa Proteasomal/metabolismo , Dominios Proteicos , Proteolisis , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo
10.
Sci Rep ; 5: 13864, 2015 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-26343909

RESUMEN

Immune activation and chronic inflammation are hallmark features of HIV infection causing T-cell depletion and cellular immune dysfunction in AIDS. Here, we addressed the issue whether HIV-1 Tat could affect T cell development and acute inflammatory response by generating a transgenic mouse expressing Tat in lymphoid tissue. Tat-Tg mice showed thymus atrophy and the maturation block from DN4 to DP thymic subpopulations, resulting in CD4(+) and CD8(+) T cells depletion in peripheral blood. In Tat-positive thymus, we observed the increased p65/NF-κB activity and deregulated expression of cytokines/chemokines and microRNA-181a-1, which are involved in T-lymphopoiesis. Upon LPS intraperitoneal injection, Tat-Tg mice developed an abnormal acute inflammatory response, which was characterized by enhanced lethality and production of inflammatory cytokines. Based on these findings, Tat-Tg mouse could represent an animal model for testing adjunctive therapies of HIV-1-associated inflammation and immune deregulation.


Asunto(s)
Diferenciación Celular , Infecciones por VIH/inmunología , VIH-1/genética , VIH-1/inmunología , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/genética , Animales , Análisis por Conglomerados , Citocinas/sangre , Citocinas/genética , Citocinas/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Infecciones por VIH/metabolismo , Infecciones por VIH/virología , Lipopolisacáridos/inmunología , Recuento de Linfocitos , Depleción Linfocítica , Linfopoyesis , Ratones , Ratones Transgénicos , MicroARNs/genética , FN-kappa B/metabolismo , Subgrupos de Linfocitos T/metabolismo , Timocitos/citología , Timocitos/inmunología , Timo/citología , Timo/inmunología , Timo/metabolismo
11.
J Biol Chem ; 290(22): 13958-71, 2015 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-25882842

RESUMEN

The human inhibitor of Bruton's tyrosine kinase isoform α (IBtkα) is a BTB protein encoded by the IBTK gene, which maps to chromosomal locus 6q14.1, a mutational hot spot in lymphoproliferative disorders. Here, we demonstrate that IBtkα forms a CRL3(IBTK) complex promoting its self-ubiquitylation. We identified the tumor suppressor Pdcd4 as IBtkα interactor and ubiquitylation substrate of CRL3(IBTK) for proteasomal degradation. Serum-induced degradation of Pdcd4 required both IBtkα and Cul3, indicating that CRL3(IBTK) regulated the Pdcd4 stability in serum signaling. By promoting Pdcd4 degradation, IBtkα counteracted the suppressive effect of Pdcd4 on translation of reporter luciferase mRNAs with stem-loop structured or unstructured 5'-UTR. IBtkα depletion by RNAi caused Pdcd4 accumulation and decreased the translation of Bcl-xL mRNA, a well known target of Pdcd4 repression. By characterizing CRL3(IBTK) as a novel ubiquitin ligase, this study provides new insights into regulatory mechanisms of cellular pathways, such as the Pdcd4-dependent translation of mRNAs.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas Portadoras/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Unión al ARN/metabolismo , Ubiquitina/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Secuencias de Aminoácidos , Animales , Secuencia de Bases , Proteínas Portadoras/genética , Glutatión/metabolismo , Células HEK293 , Células HeLa , Homeostasis , Humanos , Péptidos y Proteínas de Señalización Intracelular , Lentivirus/metabolismo , Espectrometría de Masas , Ratones , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Homología de Secuencia de Ácido Nucleico , Ubiquitina-Proteína Ligasas/metabolismo
12.
Acta Ophthalmol ; 93(3): e218-22, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25271003

RESUMEN

PURPOSE: To verify the effect of vasostatin-1 (VS-1), an anti-angiogenic fragment of chromogranin A, in the prevention of choroidal neovascularization (CNV) in an established mouse model of laser-induced ocular neovascularization. METHODS: Bruch's membrane, the innermost layer of the choroid, was broken by laser photocoagulation in C57/Bl6 mice, to induce CNV. Mice were then treated daily for 14 days by intraperitoneal injection of VS-1 or vehicle (6 mice/group). CNV and vascular leakage were measured at three time-points (day 0, 7 and 14) in vivo by spectral domain optical coherence tomography (OCT) and fluorescein angiography (FA). Ex vivo analysis of CNV was also performed at day 14 by confocal microscopy analysis of dextran-perfused choroidal flat-mounts. RESULTS: In vivo analyses showed that VS-1 significantly reduced CNV at day 14 (p = 0.03) and vascular leakage at day 7 (p = 0.01) and 14 (p = 0.04). Ex vivo confocal microscopy analysis of CNV performed on dextran-perfused choroidal flat-mounts at day 14 confirmed the protective activity of VS-1 (p = 0.01). A significant correlation between the results of in vivo and ex vivo analyses of CNV was also observed (p = 0.001, R(2) = 0.81). CONCLUSION: The results indicate that VS-1 can prevent CNV and vascular leakage in a mouse model of ocular neovascularization, suggesting that this polypeptide might have therapeutic activity in human ocular diseases that are complicated by neovascularization or excessive vascular permeability.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Neovascularización Coroidal/tratamiento farmacológico , Cromogranina A/farmacología , Modelos Animales de Enfermedad , Fragmentos de Péptidos/farmacología , Animales , Lámina Basal de la Coroides/cirugía , Permeabilidad Capilar , Neovascularización Coroidal/diagnóstico , Neovascularización Coroidal/etiología , Angiografía con Fluoresceína , Inyecciones Intraperitoneales , Coagulación con Láser/efectos adversos , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Tomografía de Coherencia Óptica
13.
Drug Des Devel Ther ; 8: 519-27, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24872682

RESUMEN

BACKGROUND: Mixed venous and arterial ulcers account for approximately 15%-30% of all venous leg ulcerations. Several studies have shown that matrix metalloproteinases (MMPs) and neutrophil gelatinase-associated lipocalin (NGAL) play a central role in the pathophysiology of venous and arterial diseases. Some studies have shown the efficacy of glycosaminoglycans, such as sulodexide (SDX), in treating patients with leg ulcers. The aim of this study was to evaluate clinical effects of SDX and its correlation with MMPs and NGAL expression in patients with mixed arterial and venous leg ulcers. METHODS: Patients eligible for this study were of both sexes, older than 20 years, and with a clinical and instrumental diagnosis of mixed ulcer. RESULTS: Fifty-three patients of both sexes were enrolled and divided into two groups by means of randomization tables. Group A (treated group) comprised 18 females and ten males (median age: 68.7 years) treated with standard treatment (compression therapy and surgery) + SDX (600 lipoprotein lipase-releasing units/day intramuscularly) for 15 days followed by SDX 250 lipase-releasing units every 12 hours day orally for 6 months as adjunctive treatment. Group B (control group) comprised 17 females and eight males (median age: 64.2 years) treated with standard treatment only (compression therapy and surgery). The type of surgery was chosen according to anatomical level of vein incompetence: superficial venous open surgery and/or subfascial endoscopic perforating surgery. In all enrolled patients, blood samples were collected in order to evaluate the plasma levels of MMPs and NGAL through enzyme-linked immunosorbent assay. These results were compared to another control group (Group C) of healthy individuals. Moreover, biopsies of ulcers were taken to evaluate the tissue expression of MMPs and NGAL through Western blot analysis. Our results revealed that SDX treatment is able to reduce both plasma levels and tissue expression of MMPs improving the clinical conditions in patients with mixed ulcers. CONCLUSION: Inhibition of MMPs could represent a possible therapeutic intervention to limit the progression of leg ulceration. In particular, our findings demonstrate the efficacy of SDX in patients with mixed arterial and venous chronic ulcers of the lower limbs.


Asunto(s)
Glicosaminoglicanos/uso terapéutico , Úlcera Varicosa/tratamiento farmacológico , Proteínas de Fase Aguda/análisis , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Lipocalina 2 , Lipocalinas/análisis , Masculino , Metaloproteinasas de la Matriz/análisis , Persona de Mediana Edad , Proteínas Proto-Oncogénicas/análisis , Calidad de Vida , Úlcera Varicosa/metabolismo , Úlcera Varicosa/psicología , Cicatrización de Heridas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA