Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 2 de 2
1.
Elife ; 112022 07 19.
Article En | MEDLINE | ID: mdl-35852146

The nuclear envelope (NE) assembles and grows from bilayer lipids produced at the endoplasmic reticulum (ER). How ER membrane incorporation coordinates with assembly of nuclear pore complexes (NPCs) to generate a functional NE is not well understood. Here, we use the stereotypical first division of the early C. elegans embryo to test the role of the membrane-associated nucleoporin Ndc1 in coupling NPC assembly to NE formation and growth. 3D-EM tomography of reforming and expanded NEs establishes that Ndc1 determines NPC density. Loss of ndc1 results in faster turnover of the outer scaffold nucleoporin Nup160 at the NE, providing an explanation for how Ndc1 controls NPC number. NE formation fails in the absence of both Ndc1 and the inner ring component Nup53, suggesting partially redundant roles in NPC assembly. Importantly, upregulation of membrane synthesis restored the slow rate of nuclear growth resulting from loss of ndc1 but not from loss of nup53. Thus, membrane biogenesis can be decoupled from Ndc1-mediated NPC assembly to promote nuclear growth. Together, our data suggest that Ndc1 functions in parallel with Nup53 and membrane biogenesis to control NPC density and nuclear size.


Nuclear Pore Complex Proteins , Nuclear Pore , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Cell Nucleus/metabolism , Nuclear Envelope/metabolism , Nuclear Pore/metabolism , Nuclear Pore Complex Proteins/genetics , Nuclear Pore Complex Proteins/metabolism
2.
ACS Appl Bio Mater ; 1(6): 1853-1863, 2018 Dec 17.
Article En | MEDLINE | ID: mdl-34996286

Current trends in wound care research move toward the development of wound healing dressings designed to treat different types of wounds (e.g., burns and chronic wounds) and toward tailoring treatments for different stages of the wound healing process. In this context, the development of advanced nanotherapeutic materials is highlighted as a promising strategy to efficiently control specific phases of the wound healing process. Here, Ca2+-cross-linked wood-derived nanofibrillated cellulose (NFC) hydrogels are evaluated as wound healing dressings. In vitro biocompatibility assays were performed to study the interaction of the NFC hydrogels with cellular processes that are tightly related to wound healing. Moreover, an in vivo dermo-epidermic full thickness wound healing model in rat was used to uncover the wound healing ability of the Ca2+-cross-linked NFC hydrogels. The in vitro experiments showed that the NFC hydrogels were able to support fibroblast and keratinocyte proliferation. A potential effect of the hydrogels on triggering keratinocyte differentiation was furthermore proposed. In vivo, the NFC hydrogels stimulated healing without causing any adverse local tissue effects, potentially owing to their moisture-donating properties and the herein discussed aiding effect of the Ca2+-cross-linker on epidermal generation. Thus, this work extensively demonstrates the wound healing ability of NFC hydrogels and presents an important milestone in the research on NFC toward advanced wound healing applications.

...