Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Curr Opin Biotechnol ; 78: 102845, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36403537

RESUMEN

Diols are important bulk chemicals that are widely used in polymer, cosmetics, fuel, food, and pharmaceutical industries. The development of bioprocess to produce diols from renewable feedstocks has gained much interest in recent years and is contributing to reducing the carbon footprint of the chemical industry. Although bioproduction of some natural diols such as 1,3-propanediol and 2,3-butanediol has been commercialized, microbial production of most other diols is still challenging due to the lack of natural biosynthetic pathways. This review describes the recent efforts in the development of novel synthetic pathways and metabolic engineering strategies for the biological production of C2∼C5 diols. We also discussed the main challenges and future perspectives for the microbial processes toward industrial application.


Asunto(s)
Butileno Glicoles , Ingeniería Metabólica , Butileno Glicoles/metabolismo , Vías Biosintéticas
2.
Metab Eng ; 74: 168-177, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36328298

RESUMEN

1,5-Pentanediol (1,5-PDO) is a high value-added chemical which is widely used as a monomer in the polymer industry. There are no natural organisms that could directly produce 1,5-PDO from renewable carbon sources. In this study, we report metabolic engineering of Escherichia coli for high-level production of 1,5-PDO from glucose via a cadaverine-derived pathway. In the newly proposed pathway, cadaverine can be converted to 1,5-PDO via 5-hydroxyvalerate (5-HV) by introducing only one heterologous enzyme in E. coli. Different endogenous genes of E. coli were screened and heterologous carboxylic acid reductase genes were tested to build a functional pathway. Compared to the previously reported pathways, the engineered cadaverine-based pathway has a higher theoretical yield (0.70 mol/mol glucose) and higher catalytic efficiency. By further combining strategies of pathway engineering and process engineering, we constructed an engineered E. coli strain that could produce 2.62 g/L 1,5-PDO in shake-flask and 9.25 g/L 1,5-PDO with a yield of 0.28 mol/mol glucose in fed-batch fermentation. The proposed new pathway and engineering strategies reported here should be useful for developing biological routes to produce 1,5-PDO for real application.


Asunto(s)
Escherichia coli , Ingeniería Metabólica , Cadaverina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Fermentación , Glucosa/genética , Glucosa/metabolismo
3.
Metab Eng ; 70: 79-88, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35038553

RESUMEN

Corynebacterium glutamicum is a versatile chassis which has been widely used to produce various amino acids and organic acids. In this study, we report the development of an efficient C. glutamicum strain to produce 1,3-propanediol (1,3-PDO) from glucose and xylose by systems metabolic engineering approaches, including (1) construction and optimization of two different glycerol synthesis modules; (2) combining glycerol and 1,3-PDO synthesis modules; (3) reducing 3-hydroxypropionate accumulation by clarifying a mechanism involving 1,3-PDO re-consumption; (4) reducing the accumulation of toxic 3-hydroxypropionaldehyde by pathway engineering; (5) engineering NADPH generation pathway and anaplerotic pathway. The final engineered strain can efficiently produce 1,3-PDO from glucose with a titer of 110.4 g/L, a yield of 0.42 g/g glucose, and a productivity of 2.30 g/L/h in fed-batch fermentation. By further introducing an optimized xylose metabolism module, the engineered strain can simultaneously utilize glucose and xylose to produce 1,3-PDO with a titer of 98.2 g/L and a yield of 0.38 g/g sugars. This result demonstrates that C. glutamicum is a potential chassis for the industrial production of 1,3-PDO from abundant lignocellulosic feedstocks.


Asunto(s)
Corynebacterium glutamicum , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Fermentación , Glucosa/metabolismo , Ingeniería Metabólica , Glicoles de Propileno , Xilosa/metabolismo
4.
ACS Synth Biol ; 10(8): 1946-1955, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34264647

RESUMEN

1,3-Butanediol (1,3-BDO) is an important C4 platform chemical widely used as a solvent in cosmetics and a key intermediate for the synthesis of fragrances, pheromones, and pharmaceuticals. The development of sustainable bioprocesses to produce enantiopure 1,3-BDO from renewable bioresources by fermentation is a promising alternative to conventional chemical routes and has aroused great interest in recent years. Although two metabolic pathways have been previously established for the biosynthesis of (R)-1,3-PDO, the reported titer and yield are too low for cost-competitive production. In this study, we report the combination of different metabolic engineering strategies to improve the production of (R)-1,3-BDO by Escherichia coli, including (1) screening of key pathway enzymes; (2) increasing NADPH supply by cofactor engineering; (3) optimization of fermentation conditions to divert more flux into 1,3-BDO pathway; (4) reduction of byproducts formation by pathway engineering. With these efforts, the best engineered E. coli strain can efficiently produce (R)-1,3-BDO with a yield of 0.6 mol/mol glucose, corresponding to 60% of the theoretical yield. Besides, we also showed the feasibility of aerobically producing 1,3-BDO via a new pathway using 3-hydroxybutyrate as an intermediate.


Asunto(s)
Butileno Glicoles/metabolismo , Escherichia coli , Ingeniería Metabólica , Escherichia coli/genética , Escherichia coli/metabolismo , Glucosa/metabolismo , NADP/genética , NADP/metabolismo
5.
Metab Eng ; 65: 52-65, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33722653

RESUMEN

The economic viability of current bio-production systems is often limited by its low productivity due to slow cell growth and low substrate uptake rate. The fastest-growing bacterium Vibrio natriegens is a highly promising next-generation workhorse of the biotechnology industry which can utilize various industrially relevant carbon sources with high substrate uptake rates. Here, we demonstrate the first systematic engineering example of V. natriegens for the heterologous production of 1,3-propanediol (1,3-PDO) from glycerol. Systems metabolic engineering strategies have been applied in this study to develop a superior 1,3-PDO producer, including: (1) heterologous pathway construction and optimization; (2) engineering cellular transcriptional regulators and global transcriptomic analysis; (3) enhancing intracellular reducing power by cofactor engineering; (4) reducing the accumulation of toxic intermediate by pathway engineering; (5) systematic engineering of glycerol oxidation pathway to eliminate byproduct formation. A final engineered strain can efficiently produce 1,3-PDO with a titer of 56.2 g/L, a yield of 0.61 mol/mol, and an average productivity of 2.36 g/L/h. The strategies described in this study would be useful for engineering V. natriegens as a potential chassis for the production of other useful chemicals and biofuels.


Asunto(s)
Ingeniería Metabólica , Vibrio , Glicerol , Glicoles de Propileno , Vibrio/genética
6.
ACS Synth Biol ; 10(3): 478-486, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33625207

RESUMEN

1,3-Propanediol (1,3-PDO) is a promising platform chemical used to manufacture various polyesters, polyethers, and polyurethanes. Microbial production of 1,3-PDO using non-natural producers often requires adding expensive cofactors such as vitamin B12, which increases the whole production cost. In this study, we proposed and engineered a non-natural 1,3-PDO synthetic pathway derived from acetyl-CoA, enabling efficient accumulation of 1,3-PDO in Escherichia coli without adding expensive cofactors. This functional pathway was established by introducing the malonyl-CoA-dependent 3-hydroxypropionic acid (3-HP) module and screening the key enzymes to convert 3-HP to 1,3-PDO. The best engineered strain can produce 2.93 g/L 1,3-PDO with a yield of 0.35 mol/mol glucose in shake flask cultivation (and 7.98 g/L in fed-batch fermentation), which is significantly higher than previous reports based on homoserine- or malate-derived non-natural pathways. We also demonstrated for the first time the feasibility of producing 1,3-PDO from diverse carbohydrates including xylose, glycerol, and acetate based on the same pathway. Thus, this study provides an alternative route for 1,3-PDO production.


Asunto(s)
Escherichia coli/metabolismo , Glucosa/metabolismo , Ácido Láctico/análogos & derivados , Ingeniería Metabólica , Glicoles de Propileno/metabolismo , Aldehído Deshidrogenasa/genética , Aldehído Deshidrogenasa/metabolismo , Coenzima A Transferasas/genética , Coenzima A Transferasas/metabolismo , Glicerol/metabolismo , Ácido Láctico/química , Ácido Láctico/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Glicoles de Propileno/química , Vitamina B 12/química , Xilosa/metabolismo
7.
ACS Synth Biol ; 10(1): 192-203, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33301309

RESUMEN

1,5-Pentanediol (1,5-PDO) is an important C5 building block for the synthesis of different value-added polyurethanes and polyesters. However, no natural metabolic pathway exists for the biosynthesis of 1,5-PDO. Herein we designed and constructed a promising nonnatural pathway for de novo production of 1,5-PDO from cheap carbohydrates. This biosynthesis route expands natural lysine pathways and employs two artificial metabolic modules to sequentially convert lysine into 5-hydroxyvalerate (5-HV) and 1,5-PDO via 5-hydroxyvaleryl-CoA. Theoretically, the 5-hydroxyvaleryl-CoA-based pathway is more energy-efficient than a recently published carboxylic acid reductase-based pathway for 1,5-PDO production. By combining strategies of systematic enzyme screening, pathway balancing, and transporter engineering, we successfully constructed a minimally engineered Escherichia coli strain capable of producing 3.19 g/L of 5-HV and 0.35 g/L of 1,5-PDO in a medium containing 20 g/L of glucose and 5 g/L lysine. Introducing the synthetic modules into a lysine producer and enhancing NADPH supply enabled the strain to accumulate 1.04 g/L of 5-HV and 0.12 g/L of 1,5-PDO using glucose as the main carbon source. This work lays the basis for the development of a biological route for 1,5-PDO production from renewable bioresources.


Asunto(s)
Escherichia coli/metabolismo , Glucosa/metabolismo , Glicoles/metabolismo , Ingeniería Metabólica/métodos , Pentanos/metabolismo , Vías Biosintéticas/genética , Escherichia coli/química , Glicoles/química , Hidroliasas/metabolismo , Lisina/metabolismo , Pentanos/química
8.
Bioresour Bioprocess ; 8(1): 125, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38650249

RESUMEN

Vibrio natriegens is a promising industrial chassis with a super-fast growth rate and high substrate uptake rates. V. natriegens was previously engineered to produce 1,3-propanediol (1,3-PDO) from glycerol by overexpressing the corresponding genes in a plasmid. However, antibiotic selection pressure for plasmid stability was not satisfactory and plasmid loss resulted in reduced productivity of the bioprocess. In this study, we developed an antibiotic-free plasmid stabilization system for V. natriegens. The system was achieved by shifting the glpD gene, one of the essential genes for glycerol degradation, from the chromosome to plasmid. With this system, engineered V. natriegens can stably maintain a large expression plasmid during the whole fed-batch fermentation and accumulated 69.5 g/L 1,3-PDO in 24 h, which was 23% higher than that based on antibiotic selection system. This system was also applied to engineering V. natriegens for the production of 3-hydroxypropionate (3-HP), enabling the engineered strain to accumulate 64.5 g/L 3-HP in 24 h, which was 30% higher than that based on antibiotic system. Overall, the developed strategy could be useful for engineering V. natriegens as a platform for the production of value-added chemicals from glycerol.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA