Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 115
1.
Eur J Hum Genet ; 2024 May 03.
Article En | MEDLINE | ID: mdl-38702428

COQ7 pathogenetic variants cause primary CoQ10 deficiency and a clinical phenotype of encephalopathy, peripheral neuropathy, or multisystemic disorder. Early diagnosis is essential for promptly starting CoQ10 supplementation. Here, we report novel compound heterozygous variants in the COQ7 gene responsible for a prenatal onset (20 weeks of gestation) of hypertrophic cardiomyopathy and intestinal dysmotility in a Bangladesh consanguineous family with two affected siblings. The main clinical findings were dysmorphisms, recurrent intestinal occlusions that required ileostomy, left ventricular non-compaction cardiomyopathy, ascending aorta dilation, arterial hypertension, renal dysfunction, diffuse skin desquamation, axial hypotonia, neurodevelopmental delay, and growth retardation. Exome sequencing revealed compound heterozygous rare variants in the COQ7 gene, c.613_617delGCCGGinsCAT (p.Ala205HisfsTer48) and c.403A>G (p.Met135Val). In silico analysis and functional in vitro studies confirmed the pathogenicity of the variants responsible for abolished activities of complexes I + III and II + III in muscle homogenate, severe decrease of CoQ10 levels, and reduced basal and maximal respiration in patients' fibroblasts. The first proband deceased at 14 months of age, whereas supplementation with a high dose of CoQ10 (30 mg/kg/day) since the first days of life modified the clinical course in the second child, showing a recovery of milestones acquirement at the last follow-up (18 months of age). Our study expands the clinical spectrum of primary CoQ10 deficiency due to COQ7 gene defects and highlights the essential role of multidisciplinary and combined approaches for a timely diagnosis.

3.
Neurol Sci ; 2024 Feb 21.
Article En | MEDLINE | ID: mdl-38383748

PURPOSE: We aim to propose a visual quantitative score for muscle edema in lower limb MRI to contribute to the diagnosis of idiopathic inflammatory myopathy (IIM). MATERIAL AND METHODS: We retrospectively evaluated 85 consecutive patients (mean age 57.4 ± 13.9 years; 56.5% female) with suspected IIM (muscle weakness and/or persistent hyper-CPK-emia with/without myalgia) who underwent MRI of lower limbs using T2-weighted fast recovery-fast spin echo images and fat-sat T2 echo planar images. Muscle inflammation was evaluated bilaterally in 11 muscles of the thigh and eight muscles of the leg. Edema in each muscle was graded according to a four-point Likert-type scale adding up to 114 points ([11 + 8)] × 3 × 2). Diagnostic accuracy of the total edema score was explored by assessing sensitivity and specificity using the area under the ROC curve. Final diagnoses were made by a multidisciplinary Expert Consensus Panel applying the Bohan and Peter diagnostic criteria whenever possible. RESULTS: Of the 85 included patients, 34 (40%) received a final diagnosis of IIM (IIM group) while 51 (60%) received an alternative diagnosis (non-IIM group). A cutoff score ≥ 18 was able to correctly classify patients having an IIM with an area under the curve of 0.85, specificity of 96%, and sensitivity of 52.9%. CONCLUSION: Our study demonstrates that a quantitative MRI score for muscle edema in the lower limbs (thighs and legs) aids in distinguishing IIM from conditions that mimic it.

4.
Front Med (Lausanne) ; 10: 1266172, 2023.
Article En | MEDLINE | ID: mdl-37724175

Although rare, C3 glomerulopathy (C3G) is increasingly recognized thanks to the currently available diagnostic skills. C3G is not a single disease but a group of disorders with distinct pathogenesis and progression. Thus, an essential step for its management remains an in-depth characterization of the specific form and the identification of underlying conditions, which may also impact treatment choices as well. Among these entities, an emerging condition is the association of C3G with monoclonal gammopathy, which confers poor outcomes. Overall, diagnosis of C3G remains challenging, and determining the appropriate treatment remains unclear. Conventional immunosuppressive therapy has proven ineffective in such cases, while clone-directed therapies have shown promising results in small interventional studies and case series. Here, we report a case of a patient affected by C3G with monoclonal gammopathy of renal significance who experienced rapid deterioration of kidney function requiring replacement therapy. After the failure of first-line treatment, a switch to the anti-CD38 therapy with daratumumab resulted in the progressive improvement of the patient's kidney function, leading to the discontinuation of hemodialysis after approximately 10 months. Serial renal biopsies were also performed to study the disease's evolution in response to the treatment. Based on the description of this single case, we have comprehensively reviewed available studies on daratumumab use in patients with C3G associated with monoclonal gammopathy to provide insights for the design of prospective studies which aim to enhance the management of such poor prognosis disease.

6.
Am J Kidney Dis ; 82(5): 581-596.e0, 2023 Nov.
Article En | MEDLINE | ID: mdl-37301502

RATIONALE & OBJECTIVE: Fabry disease (FD) is an X-linked genetic disorder that causes lysosomal storage of glycosphingolipids, primarily globotriaosylceramide (Gb3) and its derivative globotriaosylsphingosine (lyso-Gb3), with multiorgan dysfunction including chronic kidney disease. Affected individuals may be carriers of gene variants that are of uncertain significance (GVUS). We describe kidney pathology at the early stages of FD-related kidney disease to gain insights into its association with GVUS and sex. STUDY DESIGN: Single-center, case series. SETTING & PARTICIPANTS: Thirty-five consecutively biopsied patients (aged 48.1±15.4 years, 22 females) from among 64 patients with genetically diagnosed FD. Biopsies were retrospectively screened using the International Study Group of Fabry Nephropathy Scoring System. OBSERVATIONS: Genetic mutation type, p.N215S and D313Y, sex, age, estimated glomerular filtration rate (eGFR), plasma lyso-Gb3 (pLyso-Gb3) levels, and histological parameters, including Gb3 deposits were recorded. Genetic analyses showed mostly missense mutations, p.N215S variant in 15, and the "benign polymorphism" D313Y in 4 of the biopsied patients. Morphological lesions were similar for men and women except for interstitial fibrosis and arteriolar hyalinosis being more common in men. Early in their clinical course, patients with normal/mild albuminuria had podocyte, tubular, and peritubular capillary vacuoles/inclusions, and evidence of chronicity, i.e., glomerulosclerosis, interstitial fibrosis, tubular atrophy. These findings appeared to be associated with pLyso-Gb3, eGFR, and age. LIMITATIONS: Retrospective design and inclusion of outpatients partially based on family pedigree. CONCLUSIONS: In early stages of kidney disease in the setting of FD, numerous histological abnormalities are present. These observations suggest that kidney biopsies early in FD may reveal activity of kidney involvement that may inform clinical management.

7.
Epilepsia ; 64(8): e170-e176, 2023 08.
Article En | MEDLINE | ID: mdl-37114479

IRF2BPL has recently been described as a novel cause of neurodevelopmental disorders with multisystemic regression, epilepsy, cerebellar symptoms, dysphagia, dystonia, and pyramidal signs. We describe a novel IRF2BPL phenotype consistent with progressive myoclonus epilepsy (PME) in three novel subjects and review the features of the 31 subjects with IRF2BPL-related disorders previously reported. Our three probands, aged 28-40 years, harbored de novo nonsense variants in IRF2BPL (c.370C > T, p.[Gln124*] and c.364C > T; p.[Gln122*], respectively). From late childhood/adolescence, they presented with severe myoclonus epilepsy, stimulus-sensitive myoclonus, and progressive cognitive, speech, and cerebellar impairment, consistent with a typical PME syndrome. The skin biopsy revealed massive intracellular glycogen inclusions in one proband, suggesting a similar pathogenic pathway to other storage disorders. Whereas the two older probands were severely affected, the younger proband had a milder PME phenotype, partially overlapping with some of the previously reported IRF2BPL cases, suggesting that some of them might be unrecognized PME. Interestingly, all three patients harbored protein-truncating variants clustered in a proximal, highly conserved gene region around the "coiled-coil" domain. Our data show that PME can be an additional phenotype within the spectrum of IRF2BPL-related disorders and suggest IRF2BPL as a novel causative gene for PME.


Epilepsies, Myoclonic , Epilepsy , Myoclonic Epilepsies, Progressive , Myoclonus , Humans , Child , Mutation , Myoclonic Epilepsies, Progressive/genetics , Epilepsies, Myoclonic/pathology , Family , Carrier Proteins/genetics , Nuclear Proteins/genetics
8.
Int J Mol Sci ; 24(6)2023 Mar 14.
Article En | MEDLINE | ID: mdl-36982627

CDKL5 (cyclin-dependent kinase-like 5) deficiency disorder (CDD) is a severe neurodevelopmental disease that mostly affects girls, who are heterozygous for mutations in the X-linked CDKL5 gene. Mutations in the CDKL5 gene lead to a lack of CDKL5 protein expression or function and cause numerous clinical features, including early-onset seizures, marked hypotonia, autistic features, gastrointestinal problems, and severe neurodevelopmental impairment. Mouse models of CDD recapitulate several aspects of CDD symptomology, including cognitive impairments, motor deficits, and autistic-like features, and have been useful to dissect the role of CDKL5 in brain development and function. However, our current knowledge of the function of CDKL5 in other organs/tissues besides the brain is still quite limited, reducing the possibility of broad-spectrum interventions. Here, for the first time, we report the presence of cardiac function/structure alterations in heterozygous Cdkl5 +/- female mice. We found a prolonged QT interval (corrected for the heart rate, QTc) and increased heart rate in Cdkl5 +/- mice. These changes correlate with a marked decrease in parasympathetic activity to the heart and in the expression of the Scn5a and Hcn4 voltage-gated channels. Interestingly, Cdkl5 +/- hearts showed increased fibrosis, altered gap junction organization and connexin-43 expression, mitochondrial dysfunction, and increased ROS production. Together, these findings not only contribute to our understanding of the role of CDKL5 in heart structure/function but also document a novel preclinical phenotype for future therapeutic investigation.


Autistic Disorder , Epileptic Syndromes , Spasms, Infantile , Female , Animals , Mice , Spasms, Infantile/drug therapy , Epileptic Syndromes/drug therapy , Brain/metabolism , Autistic Disorder/metabolism , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism
9.
Bioengineering (Basel) ; 10(2)2023 Feb 11.
Article En | MEDLINE | ID: mdl-36829733

Tissue engineering combines a scaffold, cells and regulatory signals, reproducing a biomimetic extracellular matrix capable of supporting cell attachment and proliferation. We examined the role of an electrospun scaffold made of a biocompatible polymer during the myogenesis of skeletal muscle (SKM) as an alternative approach to tissue regeneration. The engineered nanostructure was obtained by electrospinning poly(L-lactide-co-ε-caprolactone) (PLCL) in the form of a 3D porous nanofibrous scaffold further coated with collagen. C2C12 were cultured on the PLCL scaffold, and cell morphology and differentiation pathways were thoroughly investigated. The functionalized PLCL scaffold recreated the SKM nanostructure and performed its biological functions, guiding myoblast morphogenesis and promoting cell differentiation until tissue formation. The scaffold enabled cell-cell interactions through the development of cellular adhesions that were fundamental during myoblast fusion and myotube formation. Expression of myogenic regulatory markers and muscle-specific proteins at different stages of myogenesis suggested that the PLCL scaffold enhanced myoblast differentiation within a shorter time frame. The functionalized PLCL scaffold impacts myoblast bioactivity and acts as a stimulus for cell commitment, surpassing traditional 2D cell culture techniques. We developed a screening model for tissue development and a device for tissue restoration.

10.
Neurol Genet ; 9(6): e200098, 2023 Dec.
Article En | MEDLINE | ID: mdl-38235043

Objectives: UBTF1 gene encodes for Upstream Binding Transcription Factor, an essential protein for RNA metabolism. A recurrent de novo variant (c.628G>A; p.Glu210Lys) has recently been associated with a childhood-onset neurodegenerative disorder characterized by motor and language regression, ataxia, dystonia, and acquired microcephaly. In this study, we report the clinical, metabolic, molecular genetics and neuroimaging findings and histologic, histochemical, and electron microscopy studies in muscle samples of 2 patients from unrelated families with a neurodevelopmental disorder. Methods: Data were retrospectively analyzed by medical charts revision. Results: Patient 1, a 16-year-old boy, presented a childhood-onset slowly progressive neurodegenerative disorder mainly affecting language skills, behavior, and motor coordination. Patient 2, a 22-year-old woman, presented with a severe and rapidly progressive disease with dystonic tetra paresis, acquired microcephaly, and severe cognitive deficit complicated by pseudobulbar syndrome characterized by involuntary and uncontrollable outbursts of laughing, dysphagia requiring tube feeding, and nocturnal hypoventilation treated with noninvasive ventilation. Both patients carried the recurrent previously described UBTF1 de novo variant and had signs of mitochondrial dysfunction at muscle biopsy. The metabolic profile of patient 2 also revealed a decrease in CSF biopterin. Discussion: These case reports add new insights to the UBTF1 disease spectrum instrumental to improving the diagnostic rate in neurodevelopmental disorders.

11.
G Ital Nefrol ; 39(5)2022 Oct 31.
Article It | MEDLINE | ID: mdl-36563075

Malaria is one of the most common infectious diseases in the world with a high prevalence in developing countries. Renal impairment occurs in 40% of Plasmodium falciparum infections; glomeruli, tubules or interstitium can be involved with different pathophysiological mechanisms. We describe a case of severe acute renal failure caused by P. falciparum malaria in a young woman from the Ivory Coast. Renal biopsy revealed severe and widespread acute tubular necrosis and the presence of blackish pigment granules in the glomerular and peritubular capillaries, negative for iron histochemical staining; in electron microscopy we found rounded-oval-shaped structures containing cytoplasmic organelles, electrondensic granules and cellular debris, likely of infectious origin, within monocyte-macrophages located in the tubular lumen. Specific Antigen for P. falciparum and malarial parasite in blood were positive, with very rare trophozoites and gametocytes compatible with Plasmodium falciparum. Steroid therapy and specific antiparasitic therapy were set up with progressive functional improvement until complete recovery. This case highlights the importance of paying maximum attention to low incidence pathologies in our country, considering the continuous migratory movements of these years that can cause an increase in these diseases; anamnestic data are essential for a timely diagnosis which can contribute to a rapid remission avoiding severe complications.


Acute Kidney Injury , Malaria, Falciparum , Malaria , Female , Humans , Malaria/diagnosis , Malaria/epidemiology , Malaria/parasitology , Malaria, Falciparum/complications , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Plasmodium falciparum , Acute Kidney Injury/etiology , Acute Kidney Injury/pathology , Kidney Glomerulus/pathology
12.
Int J Mol Sci ; 23(15)2022 Aug 08.
Article En | MEDLINE | ID: mdl-35955927

mitochondrial neuro-gastrointestinal encephalomyopathy (MNGIE) is a rare genetic disorder characterized by thymidine phosphorylase (TP) enzyme defect. The absence of TP activity induces the imbalance of mitochondrial nucleotide pool, leading to impaired mitochondrial DNA (mtDNA) replication and depletion. Since mtDNA is required to ensure oxidative phosphorylation, metabolically active tissues may not achieve sufficient energy production. The only effective life-saving approach in MNGIE has been the permanent replacement of TP via allogeneic hematopoietic stem cell or liver transplantation. However, the follow-up of transplanted patients showed that gut tissue changes do not revert and fatal complications, such as massive gastrointestinal bleeding, can occur. The purpose of this study was to clarify whether the reintroduction of TP after transplant can recover mtDNA copy number in a normal range. Using laser capture microdissection and droplet-digital-PCR, we assessed the mtDNA copy number in each layer of full-thickness ileal samples of a naive MNGIE cohort vs. controls and in a patient pre- and post-TP replacement. The treatment led to a significant recovery of gut tissue mtDNA amount, thus showing its efficacy. Our results indicate that a timely TP replacement is needed to maximize therapeutic success before irreversible degenerative tissue changes occur in MNGIE.


Liver Transplantation , Metabolism, Inborn Errors , Mitochondrial Encephalomyopathies , DNA, Mitochondrial/genetics , Humans , Ileum , Laser Capture Microdissection , Lasers , Mitochondrial Encephalomyopathies/genetics , Mitochondrial Encephalomyopathies/therapy
13.
Front Nutr ; 9: 866048, 2022.
Article En | MEDLINE | ID: mdl-35811959

Teduglutide is a glucagon-like peptide-2 (GLP-2) analog employed in patients with short bowel syndrome (SBS) to reduce the need of parenteral nutrition in these patients, by virtue of its effects on enteric function. The experimental studies reported that the stimulating action of GLP-2 on epithelial turnover implies the potential development of dysplastic and neoplastic lesion. However, the clinical trials could not detect preneoplastic lesions on histologic material, and in a recent pilot study the occurrence of polyps was similar before and after treatment and included only low-grade dysplastic lesions. Another clue in GLP-2 function in stimulating mucosal restore is its enhancement through cooperation with epidermal growth factor (EGF). In this study, we analyzed gastroscopy and colonoscopy samplings from a child successfully weaned off parenteral nutrition with teduglutide. Villous and crypt structure was regular both in duodenal and in colonic samplings; in properly oriented villi, villus/crypt ratio was regular. The absorptive epithelium demonstrated a regular morphology. No atypia was detected in enterocytes, along epithelial structures. At the ultrastructural analysis, only a few enterocytes with vacuolized cytoplasm were observed. An S-phase marker Ki67 stained nuclei in the transitional amplifying zone, while nuclei stained by the cell cycle regulatory proteins p21 and p27 were placed in the differentiated epithelium of the duodenal villi and colonic crypts, as in the control cases. The counts of enterocytes immunostained with the same antisera, evaluated with image analysis software, were in the range of control cases. The ratio of the number of epidermal growth factor receptor (EGFR) signals/the number of centromere probe of chromosome 7 (CEP7) signals was less than 2. The findings available from this single patient are consistent with good preservation of functional capability of intestinal epithelium after treatment with GLP-2, given the histologic and ultrastructural features of enterocytes. In addition, the findings from cell cycle regulatory proteins immunolocalization and quantitative analysis show that cell renewal machinery in our case is comparable to control cases. The gene of the receptor EGFR is regularly expressed in enteric epithelium of our case. Morphologic and functional data from our patient improve evidence in favor of the safety of GLP-2 employ in SBS.

14.
Biomolecules ; 12(5)2022 04 25.
Article En | MEDLINE | ID: mdl-35625558

Neurological symptoms are increasingly recognized in SARS-CoV-2 infected individuals. However, the neuropathogenesis remains unclear and it is not possible to define a specific damage pattern due to brain virus infection. In the present study, 33 cases of brain autopsies performed during the first (February-April 2020) and the second/third (November 2020-April 2021) pandemic waves are described. In all the cases, SARS-CoV-2 RNA was searched. Pathological findings are described and compared with those presently published.


COVID-19 , Adult , Autopsy , Brain , COVID-19/epidemiology , Humans , RNA, Viral , SARS-CoV-2
15.
J Neuromuscul Dis ; 9(3): 457-462, 2022.
Article En | MEDLINE | ID: mdl-35466949

BACKGROUND: Proximal muscle weakness may be the presenting clinical feature of different types of myopathies, including limb girdle muscular dystrophy and primary mitochondrial myopathy. LGMD1B is caused by LMNA mutation. It is characterized by progressive weakness and wasting leading to proximal weakness, cardiomyopathy, and hearth conduction block. OBJECTIVE: In this article, we describe the case of a patient who presented with limb-girdle weakness and a double trouble scenario -mitochondrial DNA single deletion and a new LMNA mutation. METHODS: Pathophysiological aspects were investigated with muscle biopsy, Western Blot analysis, NGS nuclear and mtDNA analysis and neuromuscular imaging (muscle and cardiac MRI). RESULTS: Although secondary mitochondrial involvement is possible, a "double trouble" syndrome can not be excluded. CONCLUSION: Implication deriving from hypothetical coexistence of two different pathological conditions or the possible secondary mitochondrial involvement are discussed.


Muscular Dystrophies, Limb-Girdle , Muscular Dystrophies , DNA, Mitochondrial/genetics , Humans , Lamin Type A/genetics , Muscle Weakness/complications , Muscular Dystrophies/genetics , Muscular Dystrophies, Limb-Girdle/diagnosis , Muscular Dystrophies, Limb-Girdle/genetics , Mutation
16.
Front Neurol ; 13: 840683, 2022.
Article En | MEDLINE | ID: mdl-35309568

Limb-girdle muscular dystrophies (LGMDs) are clinically and genetically heterogeneous diseases presenting with a wide clinical spectrum. Autosomal dominant LGMDs represent about 10-15% of LGMDs and include disorders due to defects of DNAJB6, transportin-3 (TNPO3), HNRNPDL, Calpain-3 (CAPN3), and Bethlem myopathy. This review article aims to describe the clinical spectrum of LGMD D2 TNPO3-related, a rare disease due to heterozygous mutation in the TNPO3 gene. TNPO3 encodes for transportin-3, which belongs to the importin beta family and transports into the nucleus serine/arginine-rich (SR) proteins, such as splicing factors, and HIV-1 proteins, thus contributing to viral infection. The purpose of this review is to present and compare the clinical features and the genetic and histopathological findings described in LGMD D2, performing a comparative analytical description of all the families and sporadic cases identified. Even if the causative gene and mutations of this disease have been identified, the pathogenic mechanisms are still an open issue; therefore, we will present an overview of the hypotheses that explain the pathology of LGMD D2 TNPO3-related.

17.
BMC Vet Res ; 18(1): 111, 2022 Mar 22.
Article En | MEDLINE | ID: mdl-35317791

BACKGROUND: Interstitial lung disease is a heterogeneous group of conditions characterized by severe radiographic changes and clinicopathological findings. However, in the vast majority of cases, the cause remains unknown. CASE DESCRIPTION: In the present study, we reported the clinical case of a 3 years old female Bull Terrier presented in October 2020 to the Advanced Diagnostic Imaging Department of the Turin Veterinary Teaching Hospital with a progressive pulmonary illness characterized by dyspnea, exercise intolerance, and a diffuse and severe pulmonary interstitial pattern at imaging investigations. Considering the clinical findings, the dog was included in a serological survey for Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in companion animals, showing positive results. Due to the further clinical worsening, the owners opted for euthanasia. At necroscopy, dog showed severe and chronic bronchopneumonia compatible with a Canine Idiopathic Pulmonary Fibrosis and with serological features linked to a SARS-CoV-2 infection. CONCLUSIONS: The comparison of these lesions with those reported in humans affected by Coronavirus Disease 2019 (COVID-19) supports the hypothesis that these findings may be attributable to the post-acute sequelae of SARS-CoV-2 infection in a dog with breed predisposition to Canine Idiopathic Pulmonary Fibrosis (CIPF), although direct evidence of SARS-CoV-2 by molecular or antigenic approaches remained unsolved.


COVID-19 , Dog Diseases , Idiopathic Pulmonary Fibrosis/veterinary , Animals , COVID-19/complications , COVID-19/veterinary , Dog Diseases/diagnostic imaging , Dogs , Female , Hospitals, Animal , Hospitals, Teaching , Humans , SARS-CoV-2 , Post-Acute COVID-19 Syndrome
18.
J Pediatr Gastroenterol Nutr ; 74(5): e115-e121, 2022 05 01.
Article En | MEDLINE | ID: mdl-35129155

OBJECTIVES: Progressive familial intrahepatic cholestasis is an expanding group of autosomal recessive intrahepatic cholestatic disorders. Recently, next-generation sequencing allowed identifying new genes responsible for new specific disorders. Two biochemical phenotypes have been identified according to gamma-glutamyltransferase (GGT) activity. Mutations of the myosin 5B gene (MYO5B) are known to cause microvillus inclusion disease. Recently, different mutations in MYO5B gene have been reported in patients with low-GGT cholestasis. METHODS: A multicenter retrospective and prospective study was conducted in 32 children with cryptogenic intrahepatic cholestasis. Clinical, biochemical, histological, and treatment data were analyzed in these patients. DNA from peripheral blood was extracted, and all patients were studied by whole exome sequencing followed by Sanger sequencing. RESULTS: Six patients out of 32 had mutations in the MYO5B gene. Of these six patients, the median age at disease onset was 0.8 years, and the median length of follow-up was 4.2 years. The most common signs were pruritus, poor growth, hepatomegaly, jaundice, and hypocholic stools. Two patients also showed intestinal involvement. Transaminases and conjugated bilirubin were moderately increased, serum bile acids elevated, and GGT persistently normal. At anti-Myo5B immunostaining, performed in liver biopsy of two patients, coarse granules were evident within the cytoplasm of hepatocytes while bile salt export pump was normally expressed at the canalicular membrane. Six variants in homozygosity or compound heterozygosity in the MYO5B gene were identified, and three of them have never been described before. All nucleotide alterations were located on the myosin motor domain except one missense variant found in the isoleucine-glutamine calmodulin-binding motif. CONCLUSIONS: We identified causative mutations in MYO5B in 18.7% of a selected cohort of patients with intrahepatic cholestasis confirming a relevant role for the MYO5B gene in low-GGT cholestasis.


Cholestasis, Intrahepatic , Cholestasis , Myosin Type V , Cholestasis/genetics , Cholestasis, Intrahepatic/diagnosis , Humans , Mutation , Myosin Heavy Chains/genetics , Myosin Type V/genetics , Myosins/genetics , Phenotype , Prospective Studies , Retrospective Studies , gamma-Glutamyltransferase/genetics
19.
Am J Case Rep ; 23: e934220, 2022 Feb 23.
Article En | MEDLINE | ID: mdl-35194011

BACKGROUND Rhabdomyolysis is a syndrome characterized by muscle necrosis and the subsequent release of intracellular muscle constituents into the bloodstream. Although the specific cause is frequently evident from the history or from the immediate events, such as a trauma, extraordinary physical exertion, or a recent infection, sometimes there are hidden risk factors that have to be identified. For instance, individuals with sickle cell trait (SCT) have been reported to be at increased risk for rare conditions, including rhabdomyolysis. Moreover, there have been a few case reports of SARS-CoV-2 infection-related rhabdomyolysis. CASE REPORT We present a case of a patient affected by unknown SCT and admitted with SARS-CoV-2 pneumonia, who suffered non-traumatic non-exertional rhabdomyolysis leading to acute kidney injury (AKI), requiring acute hemodialysis (HD). The patients underwent 13 dialysis session, of which 12 were carried out using an HFR-Supra H dialyzer. He underwent kidney biopsy, where rhabdomyolysis injury was ascertained. No viral traces were found on kidney biopsy samples. The muscle biopsy showed the presence of an "open nucleolus" in the muscle cell, which was consistent with virus-infected cells. After 40 days in the hospital, his serum creatinine was 1.62 mg/dL and CPK and Myoglobin were 188 U/L and 168 ng/mL, respectively; therefore, the patient was discharged. CONCLUSIONS SARS-CoV-2 infection resulted in severe rhabdomyolysis with AKI requiring acute HD. Since SARS-CoV-2 infection can trigger sickle-related complications like rhabdomyolysis, the presence of SCT needs to be ascertained in African patients.


Acute Kidney Injury , COVID-19 , Rhabdomyolysis , Sickle Cell Trait , Acute Kidney Injury/complications , Humans , Male , Renal Dialysis/adverse effects , Rhabdomyolysis/complications , SARS-CoV-2 , Sickle Cell Trait/complications
20.
Adv Exp Med Biol ; 1369: 93-100, 2022.
Article En | MEDLINE | ID: mdl-34302289

TORCH (Toxoplasmosis, Rubella, Cytomegalovirus, Herpes Simplex Virus and Syphilis) infections are a major cause of intrauterine and perinatal infections with associated morbidity and mortality. Neonatal Herpes Simplex Virus infection caused by an enveloped, double-stranded DNA virus of the Herpesviridae family is devastating and fatal. Herpes Viruses are not hepatotropic but may rarely cause hepatitis. Most cases of HSV hepatitis rapidly progress to fulminant hepatic failure and often fatal before the diagnosis or transplantation. Nowadays, despite the availability of antiviral treatment (acyclovir), the outcome remains poor because of late identification of hepatic Herpes Simplex Virus (HSV) infection. We report a male neonate suspected with a metabolic/mitochondrial disease and multi-organ involvement but who developed a fulminant hepatic failure and disseminated coagulopathy secondary to HSV type 1 (HSV-1) infection. The postmortem diagnosis was performed demonstrating HSV-1 in liver tissue by transmission electron microscopy and by retrospective detection of HSV specific antigens by immunohistochemistry.


Herpes Simplex , Herpesvirus 1, Human , Liver Failure, Acute , Massive Hepatic Necrosis , Female , Herpes Simplex/complications , Herpes Simplex/diagnosis , Herpes Simplex/drug therapy , Humans , Infant, Newborn , Liver Failure, Acute/diagnosis , Liver Failure, Acute/etiology , Male , Massive Hepatic Necrosis/complications , Pregnancy , Pregnancy Complications, Infectious , Retrospective Studies
...