Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(7)2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37050393

RESUMEN

Extensive plastic production has become a serious environmental and health problem due to the lack of efficient treatment of plastic waste. Polyethylene terephthalate (PET) is one of the most used polymers and is accumulating in landfills or elsewhere in nature at alarming rates. In recent years, enzymatic degradation of PET by Ideonella sakaiensis PETase (IsPETase), a cutinase-like enzyme, has emerged as a promising strategy to completely depolymerize this polymer into its building blocks. Here, inspired by the architecture of cutinases and lipases homologous to IsPETase and using 3D structure information of the enzyme, we rationally designed three mutations in IsPETase active site for enhancing its PET-degrading activity. In particular, the S238Y mutant, located nearby the catalytic triad, showed a degradation activity increased by 3.3-fold in comparison to the wild-type enzyme. Importantly, this structural modification favoured the function of the enzyme in breaking down highly crystallized (~31%) PET, which is found in commercial soft drink bottles. In addition, microscopical analysis of enzyme-treated PET samples showed that IsPETase acts better when the smooth surface of highly crystalline PET is altered by mechanical stress. These results represent important progress in the accomplishment of a sustainable and complete degradation of PET pollution.

2.
Food Sci Nutr ; 8(4): 2173-2179, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32328284

RESUMEN

The Castile blackberry (Rubus glaucus Benth) is an Andean crop with nutritional and antioxidant properties. The intake of this fruit potentiates the immune system and reduces the risk of developing degenerative and cardiovascular diseases. However, the Castile blackberry is one of the most perishable fruits due to its high respiration rate and the lack of protectant peel, making this fruit susceptible to microbial attack and rapid deterioration. The objective of this research was to estimate the shelf life of Castile blackberry (R. glaucus Benth) with bacterial cellulose coating from Komagataeibacter xylinus, in order to improve the physicochemical and nutritional characteristics. Blackberries with bacterial cellulose coating at 4°C have extended its shelf life to 9 days and preserved the initial characteristics of texture, color, smell, and taste.

3.
Appl Microbiol Biotechnol ; 101(7): 2943-2952, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28120014

RESUMEN

Cel6D from Paenibacillus barcinonensis is a modular cellobiohydrolase with a novel molecular architecture among glycosyl hydrolases of family 6. It contains an N-terminal catalytic domain (family 6 of glycosyl hydrolases (GH6)), followed by a fibronectin III-like domain repeat (Fn31,2) and a C-terminal family 3b cellulose-binding domain (CBM3b). The enzyme has been identified and purified showing catalytic activity on cellulosic substrates and cellodextrins, with a marked preference for phosphoric acid swollen cellulose (PASC). Analysis of mode of action of Cel6D shows that it releases cellobiose as the only hydrolysis product from cellulose. Kinetic parameters were determined on PASC showing a K m of 68.73 mg/ml and a V max of 1.73 U/mg. A series of truncated derivatives of Cel6D have been constructed and characterized. Deletion of CBM3b caused a notable reduction in hydrolytic activity, while deletion of the Fn3 domain abolished activity, as the isolated GH6 domain was not active on any of the substrates tested. Mutant enzymes Cel6D-D146A and Cel6D-D97A were constructed in the residues corresponding to the putative acid catalyst and to the network for the nucleophilic attack. The lack of activity of the mutant enzymes indicates the important role of these residues in catalysis. Analysis of cooperative activity of Cel6D with cellulases from the same producing P. barcinonensis strain reveals high synergistic activity with processive endoglucanase Cel9B on hydrolysis of crystalline substrates. The characterized cellobiohydrolase can be a good contribution for depolymerization of cellulosic substrates and for the deconstruction of native cellulose.


Asunto(s)
Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Paenibacillus/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Celulosa/metabolismo , Celulosa 1,4-beta-Celobiosidasa/genética , Celulosa 1,4-beta-Celobiosidasa/aislamiento & purificación , Escherichia coli/genética , Hidrólisis , Cinética , Unión Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...