Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 133
Filtrar
1.
bioRxiv ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38854089

RESUMEN

There is a well-established link between abnormal sperm chromatin states and poor motility, however, how these two processes are interdependent is unknown. Here, we identified a possible mechanistic insight by showing that Protamine 2, a nuclear DNA packaging protein in sperm, directly interacts with cytoskeletal protein Septin 12, which is associated with sperm motility. Septin 12 has several isoforms, and we show, that in the Prm2 -/- sperm, the short one (Mw 36 kDa) is mislocalized, while two long isoforms (Mw 40 and 41 kDa) are unexpectedly lost in Prm2 -/- sperm chromatin-bound protein fractions. Septin 12 co-immunoprecipitated with Protamine 2 in the testicular cell lysate of WT mice and with Lamin B1/B2/B3 in co-transfected HEK cells despite we did not observe changes in Lamin B2/B3 protein or SUN4 expression in Prm2 -/- testes. Furthermore, the Prm2 -/- sperm have on average a smaller sperm nucleus and aberrant acrosome biogenesis. In humans, patients with low sperm motility (asthenozoospermia) have imbalanced histone- protamine 1/2 ratio and modified levels of cytoskeletal proteins. We detected retained Septin 12 isoforms (Mw 40 and 41 kDa) in the sperm membrane, chromatin-bound and tubulin/mitochondria protein fractions, which was not true for healthy normozoospermic men. In conclusion, our findings expand the current knowledge regarding the connection between Protamine 2 and Septin 12 expression and localization, resulting in low sperm motility and morphological abnormalities.

2.
J Neurosci ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926089

RESUMEN

N-methyl-D-aspartate receptors (NMDARs), encoded by GRIN genes, are ionotropic glutamate receptors playing a critical role in synaptic transmission, plasticity, and synapse development. Genome sequence analyses have identified variants in GRIN genes in patients with neurodevelopmental disorders, but the underlying disease mechanisms are not well understood. Here, we have created and evaluated a transgenic mouse line carrying a missense variant Grin2bL825V , corresponding to a de-novo GRIN2B variant encoding GluN2B(L825V) found in a patient with intellectual disability (ID) and autism spectrum disorder (ASD). We used HEK293T cells expressing recombinant receptors and primary hippocampal neurons prepared from heterozygous Grin2bL825V/+ (L825V/+) and wild-type Grin2b+/+ (+/+) male and female mice to assess the functional impact of the variant. Whole-cell NMDAR currents were reduced in neurons prepared from L825V/+ compared to +/+ mice. Peak amplitude of NMDAR-mediated evoked excitatory postsynaptic currents (NMDAR-eEPSC) was not changed, but NMDAR-eEPSCs in L825V/+ neurons had faster deactivation compared to +/+ neurons and were less sensitive to a GluN2B-selective antagonist ifenprodil. Together, these results suggest a decreased functional contribution of GluN2B subunits to synaptic NMDAR currents in hippocampal neurons from L825V/+ mice. The analysis of the GluN2B(L825V) subunit surface expression and synaptic localization revealed no differences compared to wild-type GluN2B. Behavioral testing of mice of both sexes demonstrated hypoactivity, anxiety, and impaired sensorimotor gating in the L825V/+ strain, particularly affecting males, as well as cognitive symptoms. The heterozygous L825V/+ mouse offers a clinically relevant model of GRIN2B-related ID/ASD and our results suggest synaptic-level functional changes that may contribute to neurodevelopmental pathology.Significance statement Variants in genes for subunits of N-methyl-D-aspartate receptors (NMDARs), a subtype of ionotropic glutamate receptors, are associated with neurodevelopmental disorders. Here we have generated a transgenic mouse model of a de-novo missense GRIN2B gene variant, identified in a patient with intellectual disability and autism, that introduces a single amino acid substitution (L825V) in the NMDAR GluN2B subunit. Di- and triheteromeric NMDARs containing the GluN2B(L825V) subunit have a reduced channel open probability. Synaptic NMDAR currents in neurons from heterozygous L825V/+ mice have accelerated deactivation and reduced ifenprodil sensitivity, suggesting synaptic loss of GluN2B function. L825V/+ mice show increased anxiety, impaired sensorimotor gating, and cognitive deficits, consistent with patient symptoms. Our study describes a clinically relevant mouse model of GRIN2B-related neurodevelopmental pathology.

3.
Nat Methods ; 21(7): 1340-1348, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38918604

RESUMEN

The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein-nucleic acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution. Three published maps were selected as targets: Escherichia coli beta-galactosidase with inhibitor, SARS-CoV-2 virus RNA-dependent RNA polymerase with covalently bound nucleotide analog and SARS-CoV-2 virus ion channel ORF3a with bound lipid. Sixty-one models were submitted from 17 independent research groups, each with supporting workflow details. The quality of submitted ligand models and surrounding atoms were analyzed by visual inspection and quantification of local map quality, model-to-map fit, geometry, energetics and contact scores. A composite rather than a single score was needed to assess macromolecule+ligand model quality. These observations lead us to recommend best practices for assessing cryo-EM structures of liganded macromolecules reported at near-atomic resolution.


Asunto(s)
Microscopía por Crioelectrón , Modelos Moleculares , Microscopía por Crioelectrón/métodos , Ligandos , SARS-CoV-2 , COVID-19/virología , Escherichia coli , beta-Galactosidasa/química , beta-Galactosidasa/metabolismo , Conformación Proteica , Reproducibilidad de los Resultados
4.
Toxicol Appl Pharmacol ; 489: 116993, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38870637

RESUMEN

We tested the effect of substituents at the (1) C3´, C3´N, (2) C10, and (3) C2-meta-benzoate positions of taxane derivatives on their activity against sensitive versus counterpart paclitaxel-resistant breast (MCF-7) and ovarian (SK-OV-3) cancer cells. We found that (1) non-aromatic groups at both C3´ and C3´N positions, when compared with phenyl groups at the same positions of a taxane derivative, significantly reduced the resistance of ABCB1 expressing MCF-7/PacR and SK-OV-3/PacR cancer cells. This is, at least in the case of the SB-T-1216 series, accompanied by an ineffective decrease of intracellular levels in MCF-7/PacR cells. The low binding affinity of SB-T-1216 in the ABCB1 binding cavity can elucidate these effects. (2) Cyclopropanecarbonyl group at the C10 position, when compared with the H atom, seems to increase the potency and capability of the derivative in overcoming paclitaxel resistance in both models. (3) Derivatives with fluorine and methyl substituents at the C2-meta-benzoate position were variously potent against sensitive and resistant cancer cells. All C2 derivatives were less capable of overcoming acquired resistance to paclitaxel in vitro than non-substituted analogs. Notably, fluorine derivatives SB-T-121205 and 121,206 were more potent against sensitive and resistant SK-OV-3 cells, and derivatives SB-T-121405 and 121,406 were more potent against sensitive and resistant MCF-7 cells. (4) The various structure-activity relationships of SB-T derivatives observed in two cell line models known to express ABCB1 favor their complex interaction not based solely on ABCB1.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP , Resistencia a Antineoplásicos , Humanos , Resistencia a Antineoplásicos/efectos de los fármacos , Células MCF-7 , Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Subfamilia B de Transportador de Casetes de Unión a ATP/genética , Relación Estructura-Actividad , Taxoides/farmacología , Taxoides/química , Línea Celular Tumoral , Paclitaxel/farmacología , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Benzoatos/farmacología , Benzoatos/química , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología
5.
Cell Commun Signal ; 22(1): 261, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715108

RESUMEN

BACKGROUND: Interleukin-6 (IL-6) is a multifunctional cytokine that controls the immune response, and its role has been described in the development of autoimmune diseases. Signaling via its cognate IL-6 receptor (IL-6R) complex is critical in tumor progression and, therefore, IL-6R represents an important therapeutic target. METHODS: An albumin-binding domain-derived highly complex combinatorial library was used to select IL-6R alpha (IL-6Rα)-targeted small protein binders using ribosome display. Large-scale screening of bacterial lysates of individual clones was performed using ELISA, and their IL-6Rα blocking potential was verified by competition ELISA. The binding of proteins to cells was monitored by flow cytometry and confocal microscopy on HEK293T-transfected cells, and inhibition of signaling function was examined using HEK-Blue IL-6 reporter cells. Protein binding kinetics to living cells was measured by LigandTracer, cell proliferation and toxicity by iCELLigence and Incucyte, cell migration by the scratch wound healing assay, and prediction of binding poses using molecular modeling by docking. RESULTS: We demonstrated a collection of protein variants called NEF ligands, selected from an albumin-binding domain scaffold-derived combinatorial library, and showed their binding specificity to human IL-6Rα and antagonistic effect in HEK-Blue IL-6 reporter cells. The three most promising NEF108, NEF163, and NEF172 variants inhibited cell proliferation of malignant melanoma (G361 and A2058) and pancreatic (PaTu and MiaPaCa) cancer cells, and suppressed migration of malignant melanoma (A2058), pancreatic carcinoma (PaTu), and glioblastoma (GAMG) cells in vitro. The NEF binders also recognized maturation-induced IL-6Rα expression and interfered with IL-6-induced differentiation in primary human B cells. CONCLUSION: We report on the generation of small protein blockers of human IL-6Rα using directed evolution. NEF proteins represent a promising class of non-toxic anti-tumor agents with migrastatic potential.


Asunto(s)
Movimiento Celular , Proliferación Celular , Receptores de Interleucina-6 , Humanos , Proliferación Celular/efectos de los fármacos , Receptores de Interleucina-6/metabolismo , Movimiento Celular/efectos de los fármacos , Células HEK293 , Línea Celular Tumoral , Unión Proteica/efectos de los fármacos
6.
Artículo en Inglés | MEDLINE | ID: mdl-38717050

RESUMEN

Background: While the influence of landscape and microclimatic conditions on tick populations is well-documented, there remains a gap in more specific data regarding their relationship to rewilding efforts with large herbivore activity. Objective: This pilot study, spanning from 2019 to 2021, explores the effects of naturalistic grazing by large semi-wild ungulates on tick abundance in the Milovice Reserve, Czechia. Methods: Tick collection was observed using flagging techniques at two distinct sites of rewilding area: one grazed, actively utilized by animals involved in the rewilding project, and one ungrazed, left fallow in neighboring areas utilized only by wild animals. Transects, each measuring 150 m in length and 5 m in width (750 m2), were established at these two sampling locations from March to September between 2019 and 2021. To minimize potential bias resulting from tick movement, a 300 m buffer zone separated the two sites. Data analysis employed a generalized estimating equations (GEE) model with negative binomial regression. The study assessed potential variations in tick abundance between selected transects, considering factors such as plant cover seasonality, temperature, and humidity. Results: During the collection periods, we gathered 586 live ticks, with 20% found in grazed areas and 80% in ungrazed areas. Notably, tick abundance was significantly higher in ungrazed areas. Peaks in tick abundance occurred in both grazed and ungrazed areas during spring, particularly in April. However, tick numbers declined more rapidly in grazed areas. Microclimatic variables like temperature and humidity did not significantly impact tick abundance compared to landscape management and seasonal factors. Conclusion: Rewilding efforts, particularly natural grazing by large ungulates, influence tick abundance and distribution. This study provides empirical data on tick ecology in rewilded areas, highlighting the importance of landscape management and environmental factors in tick management and conservation. Trophic rewilding plays a crucial role in shaping ecosystems and tick population dynamics in transformed landscapes.

7.
J Transl Med ; 22(1): 426, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38711085

RESUMEN

BACKGROUND: Programmed cell death 1 (PD-1) belongs to immune checkpoint proteins ensuring negative regulation of the immune response. In non-small cell lung cancer (NSCLC), the sensitivity to treatment with anti-PD-1 therapeutics, and its efficacy, mostly correlated with the increase of tumor infiltrating PD-1+ lymphocytes. Due to solid tumor heterogeneity of PD-1+ populations, novel low molecular weight anti-PD-1 high-affinity diagnostic probes can increase the reliability of expression profiling of PD-1+ tumor infiltrating lymphocytes (TILs) in tumor tissue biopsies and in vivo mapping efficiency using immune-PET imaging. METHODS: We designed a 13 kDa ß-sheet Myomedin scaffold combinatorial library by randomization of 12 mutable residues, and in combination with ribosome display, we identified anti-PD-1 Myomedin variants (MBA ligands) that specifically bound to human and murine PD-1-transfected HEK293T cells and human SUP-T1 cells spontaneously overexpressing cell surface PD-1. RESULTS: Binding affinity to cell-surface expressed human and murine PD-1 on transfected HEK293T cells was measured by fluorescence with LigandTracer and resulted in the selection of most promising variants MBA066 (hPD-1 KD = 6.9 nM; mPD-1 KD = 40.5 nM), MBA197 (hPD-1 KD = 29.7 nM; mPD-1 KD = 21.4 nM) and MBA414 (hPD-1 KD = 8.6 nM; mPD-1 KD = 2.4 nM). The potential of MBA proteins for imaging of PD-1+ populations in vivo was demonstrated using deferoxamine-conjugated MBA labeled with 68Galium isotope. Radiochemical purity of 68Ga-MBA proteins reached values 94.7-99.3% and in vitro stability in human serum after 120 min was in the range 94.6-98.2%. The distribution of 68Ga-MBA proteins in mice was monitored using whole-body positron emission tomography combined with computerized tomography (PET/CT) imaging up to 90 min post-injection and post mortem examined in 12 mouse organs. The specificity of MBA proteins was proven by co-staining frozen sections of human tonsils and NSCLC tissue biopsies with anti-PD-1 antibody, and demonstrated their potential for mapping PD-1+ populations in solid tumors. CONCLUSIONS: Using directed evolution, we developed a unique set of small binding proteins that can improve PD-1 diagnostics in vitro as well as in vivo using PET/CT imaging.


Asunto(s)
Tomografía de Emisión de Positrones , Receptor de Muerte Celular Programada 1 , Ingeniería de Proteínas , Humanos , Receptor de Muerte Celular Programada 1/metabolismo , Animales , Tomografía de Emisión de Positrones/métodos , Células HEK293 , Ratones , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Línea Celular Tumoral , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Secuencia de Aminoácidos
8.
PLoS One ; 19(4): e0302224, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38662658

RESUMEN

Crimean-Congo haemorrhagic fever orthonairovirus (CCHFV) is a negative-sense, single-stranded RNA virus with a segmented genome and the causative agent of a severe Crimean-Congo haemorrhagic fever (CCHF) disease. The virus is transmitted mainly by tick species in Hyalomma genus but other ticks such as representatives of genera Dermacentor and Rhipicephalus may also be involved in virus life cycle. To improve our understanding of CCHFV adaptation to its tick species, we compared nucleotide composition and codon usage patterns among the all CCHFV strains i) which sequences and other metadata as locality of collection and date of isolation are available in GenBank and ii) which were isolated from in-field collected tick species. These criteria fulfilled 70 sequences (24 coding for S, 23 for M, and 23 for L segment) of virus isolates originating from different representatives of Hyalomma and Rhipicephalus genera. Phylogenetic analyses confirmed that Hyalomma- and Rhipicephalus-originating CCHFV isolates belong to phylogenetically distinct CCHFV clades. Analyses of nucleotide composition among the Hyalomma- and Rhipicephalus-originating CCHFV isolates also showed significant differences, mainly in nucleotides located at the 3rd codon positions indicating changes in codon usage among these lineages. Analyses of codon adaptation index (CAI), effective number of codons (ENC), and other codon usage statistics revealed significant differences between Hyalomma- and Rhipicephalus-isolated CCHFV strains. Despite both sets of strains displayed a higher adaptation to use codons that are preferred by Hyalomma ticks than Rhipicephalus ticks, there were distinct codon usage preferences observed between the two tick species. These findings suggest that over the course of its long co-evolution with tick vectors, CCHFV has optimized its codon usage to efficiently utilize translational resources of Hyalomma species.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Filogenia , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Animales , Garrapatas/virología , Garrapatas/genética , Fiebre Hemorrágica de Crimea/virología , Fiebre Hemorrágica de Crimea/genética , Ixodidae/virología , Ixodidae/genética , Adaptación Fisiológica/genética , Uso de Codones
9.
Res Sq ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38343795

RESUMEN

The EMDataResource Ligand Model Challenge aimed to assess the reliability and reproducibility of modeling ligands bound to protein and protein/nucleic-acid complexes in cryogenic electron microscopy (cryo-EM) maps determined at near-atomic (1.9-2.5 Å) resolution. Three published maps were selected as targets: E. coli beta-galactosidase with inhibitor, SARS-CoV-2 RNA-dependent RNA polymerase with covalently bound nucleotide analog, and SARS-CoV-2 ion channel ORF3a with bound lipid. Sixty-one models were submitted from 17 independent research groups, each with supporting workflow details. We found that (1) the quality of submitted ligand models and surrounding atoms varied, as judged by visual inspection and quantification of local map quality, model-to-map fit, geometry, energetics, and contact scores, and (2) a composite rather than a single score was needed to assess macromolecule+ligand model quality. These observations lead us to recommend best practices for assessing cryo-EM structures of liganded macromolecules reported at near-atomic resolution.

10.
Cell Mol Life Sci ; 81(1): 36, 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38214768

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) play a critical role in normal brain function, and variants in genes encoding NMDAR subunits have been described in individuals with various neuropsychiatric disorders. We have used whole-cell patch-clamp electrophysiology, fluorescence microscopy and in-silico modeling to explore the functional consequences of disease-associated nonsense and frame-shift variants resulting in the truncation of GluN2A or GluN2B C-terminal domain (CTD). This study characterizes variant NMDARs and shows their reduced surface expression and synaptic localization, altered agonist affinity, increased desensitization, and reduced probability of channel opening. We also show that naturally occurring and synthetic steroids pregnenolone sulfate and epipregnanolone butanoic acid, respectively, enhance NMDAR function in a way that is dependent on the length of the truncated CTD and, further, is steroid-specific, GluN2A/B subunit-specific, and GluN1 splice variant-specific. Adding to the previously described effects of disease-associated NMDAR variants on the receptor biogenesis and function, our results improve the understanding of the molecular consequences of NMDAR CTD truncations and provide an opportunity for the development of new therapeutic neurosteroid-based ligands.


Asunto(s)
Neuroesteroides , Receptores de N-Metil-D-Aspartato , Humanos , Fenómenos Electrofisiológicos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
11.
Anal Chem ; 96(4): 1478-1487, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38226459

RESUMEN

Protein radical labeling, like fast photochemical oxidation of proteins (FPOP), coupled to a top-down mass spectrometry (MS) analysis offers an alternative analytical method for probing protein structure or protein interaction with other biomolecules, for instance, proteins and DNA. However, with the increasing mass of studied analytes, the MS/MS spectra become complex and exhibit a low signal-to-noise ratio. Nevertheless, these difficulties may be overcome by protein isotope depletion. Thus, we aimed to use protein isotope depletion to analyze FPOP-oxidized samples by top-down MS analysis. For this purpose, we prepared isotopically natural (IN) and depleted (ID) forms of the FOXO4 DNA binding domain (FOXO4-DBD) and studied the protein-DNA interaction interface with double-stranded DNA, the insulin response element (IRE), after exposing the complex to hydroxyl radicals. As shown by comparing tandem mass spectra of natural and depleted proteins, the ID form increased the signal-to-noise ratio of useful fragment ions, thereby enhancing the sequence coverage by more than 19%. This improvement in the detection of fragment ions enabled us to detect 22 more oxidized residues in the ID samples than in the IN sample. Moreover, less common modifications were detected in the ID sample, including the formation of ketones and lysine carbonylation. Given the higher quality of ID top-down MSMS data set, these results provide more detailed information on the complex formation between transcription factors and DNA-response elements. Therefore, our study highlights the benefits of isotopic depletion for quantitative top-down proteomics. Data are available via ProteomeXchange with the identifier PXD044447.


Asunto(s)
Proteínas , Espectrometría de Masas en Tándem , Proteínas/análisis , ADN , Iones , Isótopos
12.
J Chem Inf Model ; 64(3): 1030-1042, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38224368

RESUMEN

The sulfonamide function is used extensively as a general building block in various inhibitory scaffolds and, more specifically, as a zinc-binding group (ZBG) of metalloenzyme inhibitors. Here, we provide biochemical, structural, and computational characterization of a metallopeptidase in complex with inhibitors, where the mono- and bisubstituted sulfamide functions are designed to directly engage zinc ions of a bimetallic enzyme site. Structural data showed that while monosubstituted sulfamides coordinate active-site zinc ions via the free negatively charged amino group in a canonical manner, their bisubstituted counterparts adopt an atypical binding pattern divergent from expected positioning of corresponding tetrahedral reaction intermediates. Accompanying quantum mechanics calculations revealed that electroneutrality of the sulfamide function is a major factor contributing to the markedly lower potency of bisubstituted compounds by considerably lowering their interaction energy with the enzyme. Overall, while bisubstituted uncharged sulfamide functions can bolster favorable pharmacological properties of a given inhibitor, their use as ZBGs in metalloenzyme inhibitors might be less advantageous due to their suboptimal metal-ligand properties.


Asunto(s)
Metaloproteínas , Inhibidores de Proteasas , Inhibidores de Proteasas/farmacología , Metaloproteínas/química , Zinc/metabolismo , Iones
13.
Nucleic Acids Res ; 52(3): e12, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38084886

RESUMEN

The revolution in cryo-electron microscopy has resulted in unprecedented power to resolve large macromolecular complexes including viruses. Many methods exist to explain density corresponding to proteins and thus entire protein capsids have been solved at the all-atom level. However methods for nucleic acids lag behind, and no all-atom viral double-stranded DNA genomes have been published at all. We here present a method which exploits the spiral winding patterns of DNA in icosahedral capsids. The method quickly generates shells of DNA wound in user-specified, idealized spherical or cylindrical spirals. For transition regions, the method allows guided semiflexible fitting. For the kuravirus SU10, our method explains most of the density in a semiautomated fashion. The results suggest rules for DNA turns in the end caps under which two discrete parameters determine the capsid inner diameter. We suggest that other kuraviruses viruses may follow the same winding scheme, producing a discrete rather than continuous spectrum of capsid inner diameters. Our software may be used to explain the published density maps of other double-stranded DNA viruses and uncover their genome packaging principles.


Asunto(s)
Cápside , Podoviridae , Cápside/metabolismo , Proteínas de la Cápside/genética , Proteínas de la Cápside/metabolismo , Microscopía por Crioelectrón , ADN Viral/genética , ADN Viral/metabolismo , Ensamble de Virus/genética
14.
PLoS Negl Trop Dis ; 17(11): e0010855, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38011221

RESUMEN

Crimean-Congo haemorrhagic fever (CCHF) is the most widely distributed tick-borne viral disease in humans and is caused by the Crimean-Congo haemorrhagic fever virus (CCHFV). The virus has a broader distribution, expanding from western China and South Asia to the Middle East, southeast Europe, and Africa. The historical known distribution of the CCHFV vector Hyalomma marginatum in Europe includes most of the Mediterranean and the Balkan countries, Ukraine, and southern Russia. Further expansion of its potential distribution may have occurred in and out of the Mediterranean region. This study updated the distributional map of the principal vector of CCHFV, H. marginatum, in the Old World using an ecological niche modeling approach based on occurrence records from the Global Biodiversity Information Facility (GBIF) and a set of covariates. The model predicted higher suitability of H. marginatum occurrences in diverse regions of Africa and Asia. Furthermore, the model estimated the environmental suitability of H. marginatum across Europe. On a continental scale, the model anticipated a widespread potential distribution encompassing the southern, western, central, and eastern parts of Europe, reaching as far north as the southern regions of Scandinavian countries. The distribution of H. marginatum also covered countries across Central Europe where the species is not autochthonous. All models were statistically robust and performed better than random expectations (p < 0.001). Based on the model results, climatic conditions could hamper the successful overwintering of H. marginatum and their survival as adults in many regions of the Old World. Regular updates of the models are still required to continually assess the areas at risk using up-to-date occurrence and climatic data in present-day and future conditions.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Ixodidae , Enfermedades por Picaduras de Garrapatas , Animales , Humanos , Fiebre Hemorrágica de Crimea/epidemiología , Europa (Continente)/epidemiología
15.
Infect Immun ; 91(11): e0028223, 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37846980

RESUMEN

Ticks are hematophagous arthropods that use a complex mixture of salivary proteins to evade host defenses while taking a blood meal. Little is known about the immunological and physiological consequences of tick feeding on humans. Here, we performed the first bulk and single-nucleus RNA sequencing (snRNA-seq) of skin and blood of four persons presenting with naturally acquired, attached Ixodes scapularis ticks. Pathways and individual genes associated with innate and adaptive immunity were identified based on bulk RNA sequencing, including interleukin-17 signaling and platelet activation pathways at the site of tick attachment or in peripheral blood. snRNA-seq further revealed that the Hippo signaling, cell adhesion, and axon guidance pathways were involved in the response to an I. scapularis bite in humans. Features of the host response in these individuals also overlapped with that of laboratory guinea pigs exposed to I. scapularis and which acquired resistance to ticks. These findings offer novel insights for the development of new biomarkers for I. scapularis exposure and anti-tick vaccines for human use.


Asunto(s)
Ixodes , Mordeduras de Garrapatas , Humanos , Animales , Cobayas , Ixodes/genética , Secuencia de Bases , Conducta Alimentaria/fisiología , ARN Nuclear Pequeño
16.
Nucleic Acids Res ; 51(18): 9522-9532, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37702120

RESUMEN

The protein structure prediction problem has been solved for many types of proteins by AlphaFold. Recently, there has been considerable excitement to build off the success of AlphaFold and predict the 3D structures of RNAs. RNA prediction methods use a variety of techniques, from physics-based to machine learning approaches. We believe that there are challenges preventing the successful development of deep learning-based methods like AlphaFold for RNA in the short term. Broadly speaking, the challenges are the limited number of structures and alignments making data-hungry deep learning methods unlikely to succeed. Additionally, there are several issues with the existing structure and sequence data, as they are often of insufficient quality, highly biased and missing key information. Here, we discuss these challenges in detail and suggest some steps to remedy the situation. We believe that it is possible to create an accurate RNA structure prediction method, but it will require solving several data quality and volume issues, usage of data beyond simple sequence alignments, or the development of new less data-hungry machine learning methods.

17.
Animals (Basel) ; 13(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37627384

RESUMEN

The SARS-CoV-2 pandemic has heightened interest in the monitoring and surveillance of coronaviruses in wildlife. Testing for the virus in animals can provide valuable insights into viral reservoirs, transmission, and pathogenesis. In this study, we present the results of the molecular surveillance project focused on coronaviruses in Senegalese wildlife. During the project, we screened fecal samples of the wild animals living in the Bandia Reserve (ten non-human primates, one giraffe, and two white rhinoceros) and the free-living urban population of African four-toed hedgehogs in Ngaparou. The results showed the absence of coronaviruses in hedgehogs, non-human primates, and a giraffe. A single positive sample was obtained from a white rhinoceros. The sequencing results of amplified RdRp gene confirmed that the detected virus was SARS-CoV-2. This study represents the first documented instance of molecular detection of SARS-CoV-2 in white rhinoceros and, therefore, extends our knowledge of possible SARS-CoV-2 hosts.

18.
Vet World ; 16(6): 1193-1200, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37577208

RESUMEN

Coronaviruses (members of the Coronaviridae family) are prominent in veterinary medicine, with several known infectious agents commonly reported. In contrast, human medicine has disregarded coronaviruses for an extended period. Within the past two decades, coronaviruses have caused three major outbreaks. One such outbreak was the coronavirus disease 2019 (COVID-19) caused by the coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Over the 3-year COVID-19 outbreak, several instances of zooanthroponosis have been documented, which pose risks for virus modifications and possible re-emergence of the virus into the human population, causing a new epidemic and possible threats for vaccination or treatment failure. Therefore, widespread screening of animals is an essential technique for mitigating future risks and repercussions. However, mass detection of SARS-CoV-2 in wild animals might be challenging. In silico prediction modeling, experimental studies conducted on various animal species, and natural infection episodes recorded in various species might provide information on the potential threats to wildlife. They may be useful for diagnostic and mass screening purposes. In this review, the possible methods of wildlife screening, based on experimental data and environmental elements that might play a crucial role in its effective implementation, are reviewed.

19.
Meat Sci ; 204: 109284, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37480669

RESUMEN

Re-wilding and similar initiatives have resulted in an increase in wildlife suitable for human consumption in Europe. However, game meat production and consumption present several challenges, including infectious diseases which pose risks to livestock, processers, and consumers. This review provides insights into the infectious diseases and toxic contaminants associated with game meat. The effect of killing method on the meat quality is also discussed and means of improving the meat quality of game meat is elucidated. The use of different food safety systems that could be applied to provide safe meat is reported. The importance of collaborative multi-sector approaches is emphasized, to generate and distribute knowledge and implement One Health strategies that ensure the safe, traceable, sustainable, and professional development of commercial game meat supply chains.


Asunto(s)
Análisis de Peligros y Puntos de Control Críticos , Infecciones , Carne , Carne/análisis , Animales , Europa (Continente) , Animales Salvajes , Infecciones/microbiología , Infecciones/parasitología , Infecciones/transmisión , Humanos , Higiene , Control de Infecciones
20.
Acta Crystallogr F Struct Biol Commun ; 79(Pt 7): 180-192, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37405486

RESUMEN

The resistance of the emerging human pathogen Stenotrophomonas maltophilia to tetracycline antibiotics mainly depends on multidrug efflux pumps and ribosomal protection enzymes. However, the genomes of several strains of this Gram-negative bacterium code for a FAD-dependent monooxygenase (SmTetX) homologous to tetracycline destructases. This protein was recombinantly produced and its structure and function were investigated. Activity assays using SmTetX showed its ability to modify oxytetracycline with a catalytic rate comparable to those of other destructases. SmTetX shares its fold with the tetracycline destructase TetX from Bacteroides thetaiotaomicron; however, its active site possesses an aromatic region that is unique in this enzyme family. A docking study confirmed tetracycline and its analogues to be the preferred binders amongst various classes of antibiotics.


Asunto(s)
Oxitetraciclina , Stenotrophomonas maltophilia , Humanos , Stenotrophomonas maltophilia/genética , Stenotrophomonas maltophilia/metabolismo , Cristalografía por Rayos X , Antibacterianos/farmacología , Antibacterianos/química , Tetraciclina/farmacología , Tetraciclina/metabolismo , Oxitetraciclina/metabolismo , Pruebas de Sensibilidad Microbiana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...