Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Eur Spine J ; 31(4): 980-989, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35190896

RESUMEN

PURPOSE: Studies have shown that bracing is an effective treatment for patients with idiopathic scoliosis. According to the current classification, almost all braces fall in the thoracolumbosacral orthosis (TLSO) category. Consequently, the generalization of scientific results is either impossible or misleading. This study aims to produce a classification of the brace types. METHODS: Four scientific societies (SOSORT, SRS, ISPO, and POSNA) invited all their members to be part of the study. Six level 1 experts developed the initial classifications. At a consensus meeting with 26 other experts and societies' officials, thematic analysis and general discussion allowed to define the classification (minimum 80% agreement). The classification was applied to the braces published in the literature and officially approved by the 4 scientific societies and by ESPRM. RESULTS: The classification is based on the following classificatory items: anatomy (CTLSO, TLSO, LSO), rigidity (very rigid, rigid, elastic), primary corrective plane (frontal, sagittal, transverse, frontal & sagittal, frontal & transverse, sagittal & transverse, three-dimensional), construction-valves (monocot, bivalve, multisegmented), construction-closure (dorsal, lateral, ventral), and primary action (bending, detorsion, elongation, movement, push-up, three points). The experts developed a definition for each item and were able to classify the 15 published braces into nine groups. CONCLUSION: The classification is based on the best current expertise (the lowest level of evidence). Experts recognize that this is the first edition and will change with future understanding and research. The broad application of this classification could have value for brace research, education, clinical practice, and growth in this field.


Asunto(s)
Tirantes , Escoliosis , Consenso , Humanos , Aparatos Ortopédicos , Escoliosis/terapia , Resultado del Tratamiento
3.
Polymers (Basel) ; 14(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35054673

RESUMEN

Lignin is a natural biopolymer. A vibrant and rapid process in the synthesis of silica nanoparticles by consuming the lignin as a soft template was carefully studied. The extracted biopolymer from coir pith was employed as capping and stabilizing agents to fabricate the silica nanoparticles (nSi). The synthesized silica nanoparticles (nSi) were characterized by ultraviolet-visible (UV-Vis) spectrophotometry, X-ray diffraction analysis (XRD), Scanning Electron Microscope (SEM), Energy-Dispersive X-ray Analysis (EDAX), Dynamic Light Scattering (DLS) and Fourier-Transform Infrared Spectroscopy (FTIR). All the results obtained jointly and independently verified the formation of silica nanoparticles. In addition, EDAX analysis confirmed the high purity of the nSi composed only of Si and O, with no other impurities. XRD spectroscopy showed the characteristic diffraction peaks for nSi and confirmed the formation of an amorphous nature. The average size of nSi obtained is 18 nm. The surface charge and stability of nSi were analyzed by using the dynamic light scattering (DLS) and thus revealed that the nSi samples have a negative charge (-20.3 mV). In addition, the seed germination and the shoot and root formation on Vigna unguiculata were investigated by using the nSi. The results revealed that the application of nSi enhanced the germination in V. unguiculata. However, further research studies must be performed in order to determine the toxic effect of biogenic nSi before mass production and use of agricultural applications.

4.
Materials (Basel) ; 14(21)2021 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-34772188

RESUMEN

Nowadays, researchers are looking into next-generation biostimulants that can be designed as a dedicated agronomic tool based on plant materials. The aim of the present study was to develop a novel biostimulating product, based on plant material in the form of linseed aqueous extracts. The scope of the research included the physicochemical characterization of the product and identification of its biostimulating potential. The study has confirmed that the plant biostimulant derived from L. usitatissimum can be used as a viable agronomic tool for growing soybean. The designed and produced biostimulant is rich in bioactive compounds, including amino acids, free fatty acids, carbohydrates, and micro- and macroelements. The tested biostimulant showed significantly lower values of surface tension in relation to water and a commercial biostimulant. The soybean crops responded to the application of the preparation by improvements in agronomic and morphological levels. The linseed macerates were effective in terms of soybean yields and profitability. Our findings serve as preliminary evidence for the viability of designing and developing novel biostimulants derived from plant materials. This comprehensive approach to designing and formulating novel bioproducts necessitates more extensive and targeted research to fully explain the mechanisms behind the improvements observed in the soybean cultivation.

5.
Clin Biomech (Bristol, Avon) ; 88: 105426, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34303067

RESUMEN

BACKGROUND: The abdominal muscles play an important respiratory and stabilization role, and in coordination with other muscles regulate the intra-abdominal pressure stabilizing the spine. The evaluation of postural trunk muscle function is critical in clinical assessments of patients with musculoskeletal pain and dysfunction. This study evaluates the relationship between intra-abdominal pressure measured as anorectal pressure with objective abdominal wall tension recorded by mechanical-pneumatic-electronic sensors. METHODS: In a cross-sectional observational study, thirty-one asymptomatic participants (mean age = 26.77 ± 3.01 years) underwent testing to measure intra-abdominal pressure via anorectal manometry, along with abdominal wall tension measured by sensors attached to a trunk brace (DNS Brace). They were evaluated in five different standing postural-respiratory situations: resting breathing, Valsalva maneuver, Müller's maneuver, instructed breathing, loaded breathing when holding a dumbbell. FINDINGS: Strong correlations were demonstrated between anorectal manometry and DNS Brace measurements in all scenarios; and DNS Brace values significantly predicted intra-abdominal pressure values for all scenarios: resting breathing (r = 0.735, r2 = 0.541, p < 0.001), Valsalva maneuver (r = 0.836, r2 = 0.699, p < 0.001), Müller's maneuver (r = 0.651, r2 = 0.423, p < 0.001), instructed breathing (r = 0.708, r2 = 0.501, p < 0.001), and loaded breathing (r = 0.921, r2 = 0.848, p < 0.001). INTERPRETATION: Intra-abdominal pressure is strongly correlated with, and predicted by abdominal wall tension monitored above the inguinal ligament and in the area of superior trigonum lumbale. This study demonstrates that intra-abdominal pressure can be evaluated indirectly by monitoring the abdominal wall tension.


Asunto(s)
Pared Abdominal , Músculos Abdominales , Adulto , Estudios Transversales , Electromiografía , Humanos , Presión , Adulto Joven
6.
Materials (Basel) ; 14(8)2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33923655

RESUMEN

The aim of this work is to design and optimize the process of functionalization of cellulose fibers by organosilane functional groups using low-pressure microwave plasma discharge with hexamethyldisiloxane (HMDSO) precursor in order to prepare a compatible hydrophobic filler for composites with nonpolar thermoplastic matrices. Particular attention was paid to the study of agglomeration of cellulose fibers in the mixture with polypropylene. In our contribution, the dependence of the surface wettability on used process gas and treatment time was investigated. Scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) analyses were applied to characterize the surface morphology and chemical composition of the cellulose fibers. It was observed that the plasma treatment in oxygen process gas led to the functionalization of cellulose fibers by organosilane functional groups without degradation. In addition, the treated cellulose was highly hydrophobic with water contact angle up to 143°. The use of treated cellulose allowed to obtain a homogeneous mixture with polypropylene powder due to the significantly lower tendency of the functionalized cellulose fibers to agglomerate.

7.
Scoliosis ; 9: 11, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25120581

RESUMEN

The objective of this study is to present a new radiographic method for the assessment of vertebral rotation from an antero-posterior view of conventional X-rays which is sufficiently precise in comparison with radiographic methods presently used in clinical practice (methods of Nash-Moe and Perdriolle). This method is based on the properties of the geometric shape of vertebrae and their shared dimensional proportions. It means that the relation between vertebral body width and height doesn't change significantly within the entire thoracic and lumbar sections of the spine. In order to verify the method, we have constructed a special device for vertebral fixation. Subsequently, the X-ray pictures of individual human vertebrae with predefined rotation values (ranging from 0 degrees to 45 degrees by steps of 3 degrees) were radio-graphically measured and then compared with their actual axial rotation on the vertebral rotation device. All arithmetic averages correlate very closely with the actual values. The verification of axial vertebral rotation with the assistance of CT and MRI pictures of six scoliotic patients (in supine position) and the evaluation of axial vertebral rotation by both the new radiographic method and with the Perdriolle method proved the satisfactory accuracy of our method. The main advantage of the newly presented radiographic method is the uncomplicated measurement of vertebral rotation from AP projection of conventional X-ray pictures or from its printed copies. The gold standard of the new radiographic method is the evaluation of axial rotation of vertebrae to 30 degrees approximately and the shape of vertebral bodies without severe structural deformities. The new radiographic method seems to be suitable for use in clinical practice.

8.
Acta Bioeng Biomech ; 12(3): 59-65, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21243971

RESUMEN

The degeneration of articular cartilage results from osteoarthritis and many other forms of severe arthritis. Current treatments for cartilage repair are less than satisfactory, and rarely restore a full function or return the tissue to its natural state. The leading strategies in the treatment are aimed at the transplantation of cells and/or the use of various biological grafts, bioactive agents, or biologically compatible implant matrices. The insertion of a crushed autologous bone graft has been reported as a possible therapy. However, the regenerative quality of the tissue was less than 70% of healthy cartilage for fragments and controls. The implantation of cycloolefin-blend 3D-cylinders with hydrogel scaffolds on their proximal parts and with the applications of type I collagen films is one of several surgical therapies. The replacement and continuous biomechanical properties of the subchondral bone play an important role in the morphology and the quality of chondrogenesis. The initial biomechanical stability of COC-blend polymer replacements in the subchondral bone contributes to the formation of a new cartilage tissue. The initial bearing capacities of the implanted tissue/replacements and vertical positions of the replacements have a principal influence upon both the quality and the quantity of new articular cartilage.


Asunto(s)
Sustitutos de Huesos/uso terapéutico , Cartílago Articular/crecimiento & desarrollo , Cartílago Articular/cirugía , Condrogénesis/fisiología , Animales , Cartílago Articular/citología , Análisis de Falla de Equipo , Diseño de Prótesis , Porcinos , Resultado del Tratamiento
9.
Opt Lett ; 29(12): 1387-9, 2004 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-15233444

RESUMEN

A diode-pumped Nd:KGd(WO4)2 laser mode locked by a saturable Bragg reflector (SBR) is passively stabilized to suppress Q-switched mode locking and to extend the parameter range of continuous-wave mode locking. An indium phosphide plate exhibiting two-photon absorption and free-carrier absorption is used for passive stabilization. The intracavity pulse energy for the onset of stable continuous-wave mode locking is reduced by a factor of 4 compared with the laser without stabilization. By increasing the modulation depth of the SBR, pulse shortening by 30% is achieved and bandwidth-limited 6.2-ps pulses are measured.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...