Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(3): 3829-3840, 2024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38214484

RESUMEN

In the quest for thinner and more efficient ferroelectric devices, Hf0.5Zr0.5O2 (HZO) has emerged as a potential ultrathin and lead-free ferroelectric material. Indeed, when deposited on a TiN electrode, 1-25 nm thick HZO exhibits excellent ferroelectricity capability, allowing the prospective miniaturization of capacitors and transistor devices. To investigate the origin of ferroelectricity in HZO thin films, we conducted a far-infrared (FIR) spectroscopic study on 5 HZO films with thicknesses ranging from 10 to 52 nm, both within and out of the ferroelectric thickness range where ferroelectric properties are observed. Based on X-ray diffraction, these HZO films are estimated to contain various proportions of monoclinic (m-), tetragonal (t-), and polar orthorhombic (polar o-) phases, while only the 11, 17, and 21 nm thick are expected to include a higher amount of polar o-phase. We coupled the HZO infrared measurements with DFT simulations for these m-, t-, and polar o-crystallographic structures. The approach used was based on the supercell method, which combines all possible Hf/Zr mixed atomic sites in the solid solution. The excellent agreement between measured and simulated spectra allows assigning most bands and provides infrared signatures for the various HZO structures, including the polar orthorhombic form. Beyond pure assignment of bands, the DFT IR spectra averaging using a mix of different compositions (e.g., 70% polar o-phase +30% m-phase) of HZO DFT crystal phases allows quantification of the percentage of different structures inside the different HZO film thicknesses. Regarding the experimental data analysis, we used the spectroscopic data to perform a Kramers-Kronig constrained variational fit to extract the optical functions of the films using a Drude-Lorentz-based model. We found that the ferroelectric films could be described using a set of about 7 oscillators, which results in static dielectric constants in good agreement with theoretical values and previously reported ones for HfO2-doped ferroelectric films.

2.
ACS Appl Mater Interfaces ; 11(19): 17555-17562, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30990007

RESUMEN

We present a one-step method to produce air-stable, large-grain mixed cationic lead perovskite films and powders under ambient conditions. The introduction of 2.5 % of Zn(II), confirmed by X-ray diffraction (XRD), results in stable thin films which show the same absorption and crystal structure after 2 weeks of storage under ambient conditions. Next to prolonged stability, the introduction of Zn(II) affects photophysical properties, reducing the bulk defect density, enhancing the photoluminescence (PL), and extending the charge carrier lifetime. Furthermore, 3-chloropropylamine hydrochloride is applied as the film-forming agent. The presence of this amine hydrochloride additive results in highly oriented and large crystal domains showing an ulterior improvement of PL intensity and lifetime. The material can also be prepared as black precursor powder by a solid-solid reaction under ambient conditions and can be pressed into a perovskite pellet. The prolonged stability and the easy fabrication in air makes this material suitable for large-scale, low-cost processing for optoelectronic applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...