Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(2)2024 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-38255568

RESUMEN

This paper evaluates the non-uniformity degree of platinum and chromium Schottky contacts on silicon carbide. The forward characteristics of experimental samples were acquired in a wide, 60-500 K, temperature range. Microstructural and conventional electrical characterizations were performed, revealing the presence of inhomogeneities on the contact surface. The main parameters were extracted using inhomogeneity models of varying complexity levels. Their relevance is discussed with respect to the models' applicable, limited, temperature ranges. Finally, complete forward curve fitting was achieved using p-diode modeling, evincing that each type of contact behaves as four parallel-connected ideal diodes. Since these parallel diodes have varying influences on the overall device current with temperature and bias, operable domains can be identified where the samples behave suitably.

2.
Sensors (Basel) ; 19(10)2019 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-31137664

RESUMEN

This paper presents a high-temperature probe suitable for operating in harsh industrial applications as a reliable alternative to low-lifespan conventional solutions, such as thermocouples. The temperature sensing element is a Schottky diode fabricated on 4H-SiC wafers, with Ni as the Schottky metal, which allows operation at temperatures up to 400 °C, with sensitivities over 2 mV/°C and excellent linearity (R2 > 99.99%). The temperature probe also includes dedicated circuitry for signal acquisition and conversion to the 4 mA-20 mA industrial standard output signal. This read-out circuit can be calibrated for linear response over a tunable temperature detection range. The entire system is designed for full electrical and mechanical compatibility with existing conventional probe casings, allowing for seamless implementation in a factory's sensor network. Such sensors are tested alongside standard thermocouples, with matching temperature monitoring results, over several months, in real working conditions (a cement factory), up to 400 °C.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA