Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 3 de 3
1.
Arch Cardiovasc Dis ; 117(5): 332-342, 2024 May.
Article En | MEDLINE | ID: mdl-38644067

BACKGROUND: Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome that is poorly defined, reflecting an incomplete understanding of its pathophysiology. AIM: To redefine the phenotypic spectrum of HFpEF. METHODS: The PACIFIC-PRESERVED study is a prospective multicentre cohort study designed to perform multidimensional deep phenotyping of patients diagnosed with HFpEF (left ventricular ejection fraction≥50%), patients with heart failure with reduced ejection fraction (left ventricular ejection fraction≤40%) and subjects without overt heart failure (3:2:1 ratio). The study proposes prospective investigations in patients during a 1-day hospital stay: physical examination; electrocardiogram; performance-based tests; blood samples; cardiac magnetic resonance imaging; transthoracic echocardiography (rest and low-level exercise); myocardial shear wave elastography; chest computed tomography; and non-invasive measurement of arterial stiffness. Dyspnoea, depression, general health and quality of life will be assessed by dedicated questionnaires. A biobank will be established. After the hospital stay, patients are asked to wear a connected garment (with digital sensors) to collect electrocardiography, pulmonary and activity variables in real-life conditions (for up to 14 days). Data will be centralized for machine-learning-based analyses, with the aim of reclassifying HFpEF into more distinct subgroups, improving understanding of the disease mechanisms and identifying new biological pathways and molecular targets. The study will also serve as a platform to enable the development of innovative technologies and strategies for the diagnosis and stratification of patients with HFpEF. CONCLUSIONS: PACIFIC-PRESERVED is a prospective multicentre phenomapping study, using novel analytical techniques, which will provide a unique data resource to better define HFpEF and identify new clinically meaningful subgroups of patients.


Heart Failure , Multicenter Studies as Topic , Phenotype , Predictive Value of Tests , Stroke Volume , Ventricular Function, Left , Humans , Prospective Studies , Heart Failure/physiopathology , Heart Failure/diagnosis , Heart Failure/classification , Heart Failure/therapy , Research Design , Prognosis , Female , Male , Aged , Quality of Life , Middle Aged
2.
J Biomed Inform ; 149: 104579, 2024 01.
Article En | MEDLINE | ID: mdl-38135173

With the emergence of health data warehouses and major initiatives to collect and analyze multi-modal and multisource data, data organization becomes central. In the PACIFIC-PRESERVED (PhenomApping, ClassIFication, and Innovation for Cardiac Dysfunction - Heart Failure with PRESERVED LVEF Study, NCT04189029) study, a data driven research project aiming at redefining and profiling the Heart Failure with preserved Ejection Fraction (HFpEF), an ontology was developed by different data experts in cardiology to enable better data management in a complex study context (multisource, multiformat, multimodality, multipartners). The PACIFIC ontology provides a cardiac data management framework for the phenomapping of patients. It was built upon the BMS-LM (Biomedical Study -Lifecycle Management) core ontology and framework, proposed in a previous work to ensure data organization and provenance throughout the study lifecycle (specification, acquisition, analysis, publication). The BMS-LM design pattern was applied to the PACIFIC multisource variables. In addition, data was structured using a subset of MeSH headings for diseases, technical procedures, or biological processes, and using the Uberon ontology anatomical entities. A total of 1372 variables were organized and enriched with annotations and description from existing ontologies and taxonomies such as LOINC to enable later semantic interoperability. Both, data structuring using the BMS-LM framework, and its mapping with published standards, foster interoperability of multimodal cardiac phenomapping datasets.


Biological Ontologies , Cardiology , Heart Failure , Humans , Data Management , Heart Failure/therapy , Palliative Care , Semantics , Stroke Volume , Clinical Studies as Topic
3.
J Pharmacol Exp Ther ; 377(2): 293-304, 2021 05.
Article En | MEDLINE | ID: mdl-33602875

In failing hearts, Na+/Ca2+ exchanger (NCX) overactivity contributes to Ca2+ depletion, leading to contractile dysfunction. Inhibition of NCX is expected to normalize Ca2+ mishandling, to limit afterdepolarization-related arrhythmias, and to improve cardiac function in heart failure (HF). SAR340835/SAR296968 is a selective NCX inhibitor for all NCX isoforms across species, including human, with no effect on the native voltage-dependent calcium and sodium currents in vitro. Additionally, it showed in vitro and in vivo antiarrhythmic properties in several models of early and delayed afterdepolarization-related arrhythmias. Its effect on cardiac function was studied under intravenous infusion at 250,750 or 1500 µg/kg per hour in dogs, which were either normal or submitted to chronic ventricular pacing at 240 bpm (HF dogs). HF dogs were infused with the reference inotrope dobutamine (10 µg/kg per minute, i.v.). In normal dogs, NCX inhibitor increased cardiac contractility (dP/dtmax) and stroke volume (SV) and tended to reduce heart rate (HR). In HF dogs, NCX inhibitor significantly and dose-dependently increased SV from the first dose (+28.5%, +48.8%, and +62% at 250, 750, and 1500 µg/kg per hour, respectively) while significantly increasing dP/dtmax only at 1500 (+33%). Furthermore, NCX inhibitor significantly restored sympathovagal balance and spontaneous baroreflex sensitivity (BRS) from the first dose and reduced HR at the highest dose. In HF dogs, dobutamine significantly increased dP/dtmax and SV (+68.8%) but did not change HR, sympathovagal balance, or BRS. Overall, SAR340835, a selective potent NCX inhibitor, displayed a unique therapeutic profile, combining antiarrhythmic properties, capacity to restore systolic function, sympathovagal balance, and BRS in HF dogs. NCX inhibitors may offer new therapeutic options for acute HF treatment. SIGNIFICANCE STATEMENT: HF is facing growing health and economic burden. Moreover, patients hospitalized for acute heart failure are at high risk of decompensation recurrence, and no current acute decompensated HF therapy definitively improved outcomes. A new potent, Na+/Ca2+ exchanger inhibitor SAR340835 with antiarrhythmic properties improved systolic function of failing hearts without creating hypotension, while reducing heart rate and restoring sympathovagal balance. SAR340835 may offer a unique and attractive pharmacological profile for patients with acute heart failure as compared with current inotrope, such as dobutamine.


Heart Failure/drug therapy , Membrane Transport Modulators/therapeutic use , Sodium-Calcium Exchanger/antagonists & inhibitors , Vagus Nerve/drug effects , Animals , Baroreflex , Dogs , Heart/drug effects , Heart Rate , Membrane Transport Modulators/administration & dosage , Membrane Transport Modulators/pharmacology , Myocardial Contraction , Myocardium/metabolism , Swine
...