Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Neuron ; 89(4): 756-69, 2016 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-26853302

RESUMEN

Older concepts of a hard-wired adult brain have been overturned in recent years by in vivo imaging studies revealing synaptic remodeling, now thought to mediate rearrangements in microcircuit connectivity. Using three-color labeling and spectrally resolved two-photon microscopy, we monitor in parallel the daily structural dynamics (assembly or removal) of excitatory and inhibitory postsynaptic sites on the same neurons in mouse visual cortex in vivo. We find that dynamic inhibitory synapses often disappear and reappear again in the same location. The starkest contrast between excitatory and inhibitory synapse dynamics is on dually innervated spines, where inhibitory synapses frequently recur while excitatory synapses are stable. Monocular deprivation, a model of sensory input-dependent plasticity, shortens inhibitory synapse lifetimes and lengthens intervals to recurrence, resulting in a new dynamic state with reduced inhibitory synaptic presence. Reversible structural dynamics indicate a fundamentally new role for inhibitory synaptic remodeling--flexible, input-specific modulation of stable excitatory connections.


Asunto(s)
Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Células Piramidales/ultraestructura , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Corteza Visual/citología , Animales , Proteínas Portadoras/metabolismo , Homólogo 4 de la Proteína Discs Large , Femenino , Lateralidad Funcional , Guanilato-Quinasas/genética , Guanilato-Quinasas/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Inhibición Neural/genética , Técnicas de Cultivo de Órganos , Embarazo , Privación Sensorial , Sinapsis/ultraestructura , Ácido gamma-Aminobutírico/farmacología
3.
AIP Adv ; 5(8): 084802, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25874160

RESUMEN

Multifocal multiphoton microscopy (MMM) improves imaging speed over a point scanning approach by parallelizing the excitation process. Early versions of MMM relied on imaging detectors to record emission signals from multiple foci simultaneously. For many turbid biological specimens, the scattering of emission photons results in blurred images and degrades the signal-to-noise ratio (SNR). We have recently demonstrated that a multianode photomultiplier tube (MAPMT) placed in a descanned configuration can effectively collect scattered emission photons from each focus into their corresponding anodes significantly improving image SNR for highly scattering specimens. Unfortunately, a descanned MMM has a longer detection path resulting in substantial emission photon loss. Optical design constraints in a descanned geometry further results in significant optical aberrations especially for large field-of-view (FOV), high NA objectives. Here, we introduce a non-descanned MMM based on MAPMT that substantially overcomes most of these drawbacks. We show that we improve signal efficiency up to fourfold with limited image SNR degradation due to scattered emission photons. The excitation foci can also be spaced wider to cover the full FOV of the objective with minimal aberrations. The performance of this system is demonstrated by imaging interneuron morphological structures deep in the brains of living mice.

4.
Opt Express ; 22(18): 21368-81, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25321515

RESUMEN

Multiphoton excitation fluorescence microscopy is the preferred method for in vivo deep tissue imaging. Many biological applications demand both high imaging speed and the ability to resolve multiple fluorophores. One of the successful methods to improve imaging speed in a highly turbid specimen is multifocal multiphoton microscopy (MMM) based on use of multi-anode photomultiplier tubes (MAPMT). This approach improves imaging speed by using multiple foci for parallelized excitation without sacrificing signal to noise ratio (SNR) due to the scattering of emission photons. In this work, we demonstrate that the MAPMT based MMM can be extended with spectral resolved imaging capability. Instead of generating multiple excitation foci in a 2D grid pattern, a linear array of foci is generated. This leaves one axis of the 2D MAPMT available for spectral dispersion and detection. The spectral-resolved MMM can detect several emission signals simultaneously with high imaging speed optimized for high-throughput, high-contents applications. The new procedure is illustrated using imaging data from the kidney, peripheral nerve regeneration and dendritic morphological data from the brain.


Asunto(s)
Microscopía de Fluorescencia por Excitación Multifotónica/instrumentación , Fotones , Fluorescencia
5.
Sci Rep ; 4: 5153, 2014 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-24898470

RESUMEN

Multifocal multiphoton microscopy (MMM) achieves fast imaging by simultaneously scanning multiple foci across different regions of specimen. The use of imaging detectors in MMM, such as CCD or CMOS, results in degradation of image signal-to-noise-ratio (SNR) due to the scattering of emitted photons. SNR can be partly recovered using multianode photomultiplier tubes (MAPMT). In this design, however, emission photons scattered to neighbor anodes are encoded by the foci scan location resulting in ghost images. The crosstalk between different anodes is currently measured a priori, which is cumbersome as it depends specimen properties. Here, we present the photon reassignment method for MMM, established based on the maximum likelihood (ML) estimation, for quantification of crosstalk between the anodes of MAPMT without a priori measurement. The method provides the reassignment of the photons generated by the ghost images to the original spatial location thus increases the SNR of the final reconstructed image.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Microscopía de Fluorescencia por Excitación Multifotónica/instrumentación , Neuroimagen/métodos , Fotones , Procesamiento de Señales Asistido por Computador , Antígenos Thy-1/metabolismo , Animales , Simulación por Computador , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Hígado/citología , Hígado/metabolismo , Ratones , Ratones Transgénicos , Relación Señal-Ruido
6.
Opt Express ; 20(24): 26219-35, 2012 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-23187477

RESUMEN

Fluorescence and phosphorescence lifetime imaging are powerful techniques for studying intracellular protein interactions and for diagnosing tissue pathophysiology. While lifetime-resolved microscopy has long been in the repertoire of the biophotonics community, current implementations fall short in terms of simultaneously providing 3D resolution, high throughput, and good tissue penetration. This report describes a new highly efficient lifetime-resolved imaging method that combines temporal focusing wide-field multiphoton excitation and simultaneous acquisition of lifetime information in frequency domain using a nanosecond gated imager from a 3D-resolved plane. This approach is scalable allowing fast volumetric imaging limited only by the available laser peak power. The accuracy and performance of the proposed method is demonstrated in several imaging studies important for understanding peripheral nerve regeneration processes. Most importantly, the parallelism of this approach may enhance the imaging speed of long lifetime processes such as phosphorescence by several orders of magnitude.


Asunto(s)
Citoplasma/ultraestructura , Fluorescencia , Imagenología Tridimensional , Microscopía Fluorescente/métodos , Fotones , Humanos
7.
Neuron ; 74(2): 361-73, 2012 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-22542188

RESUMEN

A key feature of the mammalian brain is its capacity to adapt in response to experience, in part by remodeling of synaptic connections between neurons. Excitatory synapse rearrangements have been monitored in vivo by observation of dendritic spine dynamics, but lack of a vital marker for inhibitory synapses has precluded their observation. Here, we simultaneously monitor in vivo inhibitory synapse and dendritic spine dynamics across the entire dendritic arbor of pyramidal neurons in the adult mammalian cortex using large-volume, high-resolution dual-color two-photon microscopy. We find that inhibitory synapses on dendritic shafts and spines differ in their distribution across the arbor and in their remodeling kinetics during normal and altered sensory experience. Further, we find inhibitory synapse and dendritic spine remodeling to be spatially clustered and that clustering is influenced by sensory input. Our findings provide in vivo evidence for local coordination of inhibitory and excitatory synaptic rearrangements.


Asunto(s)
Espinas Dendríticas/fisiología , Neocórtex/citología , Inhibición Neural/fisiología , Neuronas/citología , Dinámicas no Lineales , Sinapsis/fisiología , Animales , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Espinas Dendríticas/genética , Espinas Dendríticas/ultraestructura , Electroporación , Embrión de Mamíferos , Lateralidad Funcional , Imagenología Tridimensional , Proteínas Luminiscentes/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Microscopía Inmunoelectrónica , Modelos Biológicos , Inhibición Neural/genética , Óptica y Fotónica , Estimulación Luminosa/métodos , Privación Sensorial/fisiología , Sinapsis/ultraestructura
8.
Nat Neurosci ; 14(5): 587-94, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21478885

RESUMEN

Although inhibition has been implicated in mediating plasticity in the adult brain, the underlying mechanism remains unclear. Here we present a structural mechanism for the role of inhibition in experience-dependent plasticity. Using chronic in vivo two-photon microscopy in the mouse neocortex, we show that experience drives structural remodeling of superficial layer 2/3 interneurons in an input- and circuit-specific manner, with up to 16% of branch tips undergoing remodeling. Visual deprivation initially induces dendritic branch retractions, and this is accompanied by a loss of inhibitory inputs onto neighboring pyramidal cells. The resulting decrease in inhibitory tone, also achievable pharmacologically using the antidepressant fluoxetine, provides a permissive environment for further structural adaptation, including addition of new synapse-bearing branch tips. Our findings suggest that therapeutic approaches that reduce inhibition, when combined with an instructive stimulus, could facilitate restructuring of mature circuits impaired by damage or disease, improving function and perhaps enhancing cognitive abilities.


Asunto(s)
Interneuronas/fisiología , Neocórtex/fisiología , Inhibición Neural/fisiología , Plasticidad Neuronal/fisiología , Animales , Antidepresivos de Segunda Generación/farmacología , Dendritas/efectos de los fármacos , Dendritas/fisiología , Dendritas/ultraestructura , Colorantes Fluorescentes/metabolismo , Fluoxetina/farmacología , Lateralidad Funcional/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Fluorescentes Verdes/genética , Interneuronas/citología , Interneuronas/efectos de los fármacos , Ratones , Ratones Transgénicos , Modelos Biológicos , Neocórtex/citología , Inhibición Neural/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Dinámicas no Lineales , Privación Sensorial/fisiología , Estadísticas no Paramétricas , Sinapsis/metabolismo , Sinapsis/ultraestructura , Antígenos Thy-1/genética , Factores de Tiempo , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Vías Visuales/efectos de los fármacos , Vías Visuales/fisiología
9.
J Biomed Opt ; 15(4): 046022, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20799824

RESUMEN

The imaging depth of two-photon excitation fluorescence microscopy is partly limited by the inhomogeneity of the refractive index in biological specimens. This inhomogeneity results in a distortion of the wavefront of the excitation light. This wavefront distortion results in image resolution degradation and lower signal level. Using an adaptive optics system consisting of a Shack-Hartmann wavefront sensor and a deformable mirror, wavefront distortion can be measured and corrected. With adaptive optics compensation, we demonstrate that the resolution and signal level can be better preserved at greater imaging depth in a variety of ex-vivo tissue specimens including mouse tongue muscle, heart muscle, and brain. However, for these highly scattering tissues, we find signal degradation due to scattering to be a more dominant factor than aberration.


Asunto(s)
Aumento de la Imagen/instrumentación , Almacenamiento y Recuperación de la Información/métodos , Lentes , Microscopía de Fluorescencia por Excitación Multifotónica/instrumentación , Transductores , Animales , Diseño de Equipo , Análisis de Falla de Equipo , Retroalimentación , Ratones , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA