Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Neurobiol Dis ; 46(1): 190-203, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22293606

RESUMEN

Copy number variation in a small region of chromosome 21 containing DYRK1A produces morphological and cognitive alterations in human. In mouse models, haploinsufficiency results in microcephaly, and a human DYRK1A gain-of-function model (three alleles) exhibits increased brain volume. To investigate these developmental aspects, we used a murine BAC clone containing the entire gene to construct an overexpression model driven by endogenous regulatory sequences. We compared this new model to two other mouse models with three copies of Dyrk1a, YACtgDyrk1a and Ts65Dn, as well as the loss-of-function model with one copy (Dyrk1a(+/-)). Growth, viability, brain weight, and brain volume depended strongly upon gene copy number. Brain region-specific variations observed in gain-of-function models mirror their counterparts in the loss-of-function model. Some variations, such as increased volume of the superior colliculus and ventricles, were observed in both the BAC transgenic and Ts65Dn mice. Using unbiased stereology we found that, in the cortex, neuron density is inversely related to Dyrk1a copy number but, in thalamic nuclei, neuron density is directly related to copy number. In addition, six genes involved either in cell division (Ccnd1 and pAkt) or in neuronal machinery (Gap43, Map2, Syp, Snap25) were regulated by Dyrk1a throughout development, from birth to adult. These results imply that Dyrk1a expression alters different cellular processes during brain development. Dyrk1a, then, has two roles in the development process: shaping the brain and controlling the structure of neuronal components.


Asunto(s)
Encéfalo/embriología , Encéfalo/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Microcefalia/genética , Neuronas/fisiología , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Tirosina Quinasas/fisiología , Animales , Apoptosis/fisiología , Encéfalo/citología , Proliferación Celular , Variaciones en el Número de Copia de ADN/genética , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microcefalia/patología , Microcefalia/fisiopatología , Neuronas/citología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Quinasas DyrK
2.
Anat Rec (Hoboken) ; 291(3): 254-62, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18231969

RESUMEN

A yeast artificial chromosome (YAC) transgenic murine model of partial trisomy 21 overexpressing five human genes -- including DYRK1A, which encodes a serine threonine kinase involved in cell cycle control -- has been shown to present an increase in brain weight. We analyzed this new phenotype by measuring total and regional brain volumes at different ages, using a 7 Tesla magnetic resonance imaging volumetric approach. Volumetric measurements showed a total volume increase of 13.6% in adult mice. Changes in brain morphogenesis were already visible at a very early postnatal stage (postnatal days 2-7). Region-specific changes were characterized from postnatal day 15 to 5 months. These results, made it possible to define region-specific effects of DYRK1A overexpression, with the strongest increase seen in the thalamus-hypothalamus area (24%).


Asunto(s)
Encéfalo/patología , Cromosomas Artificiales de Levadura , Síndrome de Down/genética , Dosificación de Gen , Imagen por Resonancia Magnética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Factores de Edad , Envejecimiento/genética , Envejecimiento/patología , Animales , Animales Recién Nacidos , Encéfalo/enzimología , Modelos Animales de Enfermedad , Síndrome de Down/enzimología , Síndrome de Down/patología , Genotipo , Humanos , Hipotálamo/enzimología , Hipotálamo/patología , Imagenología Tridimensional , Ratones , Ratones Transgénicos , Tamaño de los Órganos , Fenotipo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Tálamo/enzimología , Tálamo/patología , Regulación hacia Arriba , Quinasas DyrK
3.
PLoS One ; 2(11): e1218, 2007 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-18043732

RESUMEN

Large numbers of protein expression changes are usually observed in mouse models for neurodegenerative diseases, even when only a single gene was mutated in each case. To study the effect of gene dose alterations on the cellular proteome, we carried out a proteomic investigation on murine embryonic stem cells that either overexpressed individual genes or displayed aneuploidy over a genomic region encompassing 14 genes. The number of variant proteins detected per cell line ranged between 70 and 110, and did not correlate with the number of modified genes. In cell lines with single gene mutations, up and down-regulated proteins were always in balance in comparison to parental cell lines regarding number as well as concentration of differentially expressed proteins. In contrast, dose alteration of 14 genes resulted in an unequal number of up and down-regulated proteins, though the balance was kept at the level of protein concentration. We propose that the observed protein changes might partially be explained by a proteomic network response. Hence, we hypothesize the existence of a class of "balancer" proteins within the proteomic network, defined as proteins that buffer or cushion a system, and thus oppose multiple system disturbances. Through database queries and resilience analysis of the protein interaction network, we found that potential balancer proteins are of high cellular abundance, possess a low number of direct interaction partners, and show great allelic variation. Moreover, balancer proteins contribute more heavily to the network entropy, and thus are of high importance in terms of system resilience. We propose that the "elasticity" of the proteomic regulatory network mediated by balancer proteins may compensate for changes that occur under diseased conditions.


Asunto(s)
Células Madre Embrionarias/metabolismo , Dosificación de Gen , Proteínas/metabolismo , Proteómica , Animales , Línea Celular , Cromatografía Líquida de Alta Presión , Electroforesis en Gel Bidimensional , Ratones , Ratones Transgénicos , Espectrometría de Masa por Ionización de Electrospray
4.
Behav Genet ; 34(6): 559-69, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15520513

RESUMEN

Down syndrome occurs every 1/1000 births and is the most frequent genetic cause of mental retardation. The genetic substrate of Down syndrome, an extra chromosome 21, was discovered by Lejeune, half-a-century ago, and the chromosome has been fully sequenced, although the gene(s) implicated in the mental retardation observed with the syndrome are still unknown. Observations of patients with partial trisomy of the 21q22.2 fragment suggest that most of the signs of the syndrome, including mental retardation, could be influenced by the region referred to as the Down Minimal Chromosomal Region-1 (DCR-1) for that reason. Using the extensive syntenies between human chromosome 21 and murine chromosome 16, Smith et al. (1995, 1997) developed transpolygenic mice with human chromosome 21 fragments covering the DCR-1. Here, we explored cognitive performances in mice over-expressing the genes carried by these fragments with the Morris water-maze and fear-conditioning procedures. The 152F7 transpolygenic mice had lower performance levels, compared to non-transgenic and other transgenic mice on most measurements in the water-maze. In fear-conditioning, all transgenic mice recorded lower performance levels compared to controls in the altered context stage. The 230E8, 141G6 and 285E6 mice failed to learn or react when the sound used as the conditional stimulus was added. These results showed that the 152F7 region played a crucial role in cognitive impairment, supporting the hypothesis of DYRK-1A gene involvement. However, the data presented here also suggest that other chromosomal regions within the DCR-1 may be involved in specific cognitive functions.


Asunto(s)
Mapeo Cromosómico , Cognición/fisiología , Síndrome de Down/genética , Animales , Cromosomas Artificiales de Levadura/genética , Humanos , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Transgénicos , Fenotipo
6.
J Neuropathol Exp Neurol ; 63(5): 429-40, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15198122

RESUMEN

Down syndrome is the most frequent genetic cause of mental retardation, having an incidence of 1 in 700 live births. In the present study we used a transgenic mouse in vivo library consisting of 4 yeast artificial chromosome (YAC) transgenic mouse lines, each bearing a different fragment of the Down syndrome critical region 1 (DCR-1), implicated in brain abnormalities characterizing this pathology. The 152F7 fragment, in addition to genes also located on the other DCR-1 fragments, bears the DYRK1A gene, encoding for a serine-threonine kinase. The neurobehavioral analysis of these mouse lines showed that DYRK1A overexpressing 152F7 mice but not the other lines display learning impairment and hyperactivity during development. Additionally, 152F7 mice display increased brain weight and neuronal size. At a biochemical level we found DYRK1A overexpression associated with a development-dependent increase in phosphorylation of the transcription factor FKHR and with high levels of cyclin B1, suggesting for the first time in vivo a correlation between DYRK1A overexpression and cell cycle protein alteration. In addition, we found an altered phosphorylation of transcription factors of CREB family. Our findings support a role of DYRK1A overexpression in the neuronal abnormalities seen in Down syndrome and suggest that this pathology is linked to altered levels of proteins involved in the regulation of cell cycle.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Síndrome de Down/genética , Biblioteca Genómica , Proteínas Musculares/metabolismo , Malformaciones del Sistema Nervioso/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas , Animales , Proteínas de Ciclo Celular/genética , Tamaño de la Célula/genética , Aberraciones Cromosómicas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Ciclina B/metabolismo , Ciclina B1 , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Síndrome de Down/metabolismo , Síndrome de Down/fisiopatología , Femenino , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead , Humanos , Hipercinesia/genética , Hipercinesia/metabolismo , Hipercinesia/fisiopatología , Péptidos y Proteínas de Señalización Intracelular , Discapacidades para el Aprendizaje/genética , Masculino , Ratones , Ratones Transgénicos , Proteínas Musculares/genética , Mutación/genética , Malformaciones del Sistema Nervioso/metabolismo , Malformaciones del Sistema Nervioso/fisiopatología , Tamaño de los Órganos/genética , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Factores de Transcripción/metabolismo , Regulación hacia Arriba/genética , Quinasas DyrK
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...