Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 5 de 5
1.
Sci Total Environ ; 832: 155047, 2022 Aug 01.
Article En | MEDLINE | ID: mdl-35395295

Rivers are among the most threatened ecosystems worldwide and are experiencing rapid biodiversity loss. Flow alteration due to climate change, water abstraction and augmentation is a severe stressor on many aquatic communities. Macroinvertebrates are widely used for biomonitoring river ecosystems although current taxonomic approaches used to characterise ecological responses to flow have limitations in terms of generalisation across biogeographical regions. A new macroinvertebrate trait-based index, Flow-T, derived from ecological functional information (flow velocity preferences) currently available for almost 500 invertebrate taxa at the European scale is presented. The index was tested using data from rivers spanning different biogeographic and hydro-climatic regions from the UK, Cyprus and Italy. The performance of Flow-T at different spatial scales and its relationship with an established UK flow assessment tool, the Lotic-invertebrate Index for Flow Evaluation (LIFE), was assessed to determine the transferability of the approach internationally. Flow-T was strongly correlated with the LIFE index using both presence-absence and abundance weighted data from all study areas (r varying from 0.46 to 0.96). When applied at the river reach scale, Flow-T was effective in identifying communities associated with distinct mesohabitats characterised by their hydraulic characteristics (e.g., pools, riffles, glides). Flow-T can be derived using both presence/absence and abundance data and can be easily adapted to varying taxonomic resolutions. The trait-based approach facilitates research using the entire European invertebrate fauna and can potentially be applied in regions where information on taxa-specific flow velocity preferences is not currently available. The inter-regional and continental scale transferability of Flow-T may help water resource managers gauge the effects of changes in flow regime on instream communities at varying spatial scales.


Ecosystem , Rivers , Animals , Biodiversity , Climate Change , Environmental Monitoring , Invertebrates/physiology
2.
Environ Pollut ; 265(Pt A): 115015, 2020 Oct.
Article En | MEDLINE | ID: mdl-32563145

The use of pesticides has historically helped improve agricultural productivity, although their continued use may have unforeseen effects upon the natural environment when not applied appropriately. Metaldehyde is a commercial pesticide widely used to reduce crop losses resulting from terrestrial mollusc damage. However, following precipitation and runoff it frequently enters waterbodies with largely unknown consequences for aquatic fauna. This study represents one of the first attempts to examine its potential effects on aquatic macroinvertebrate communities at sites known to have experienced elevated metaldehyde concentrations alongside unaffected control sites. In addition, a series of laboratory exposures specifically examined the effects of metaldehyde on the survivorship of non-target aquatic mollusc species. When the entire aquatic macroinvertebrate community and aquatic mollusc community were considered, limited differences were observed between metaldehyde affected and control sites based on field data. Laboratory exposures highlighted that for the molluscs examined, gastropods (Bithynia tentaculata, Planorbis planorbis, Radix balthica and Potamopyrgus antipodarum) had a greater tolerance to metaldehyde than bivalves (Sphaerium corneum and Corbicula fluminea). However, the concentrations required to reduce survivorship of all species were much greater than those ever recorded historically under field conditions. The results suggest that the differences in the community composition recorded between sites exposed to elevated metaldehyde concentrations and control sites were probably due to nutrient loading (N and P from agricultural fertilizers) rather than metaldehyde. However, these results do not negate wider concerns regarding metaldehyde use, particularly issues caused when ingested by vertebrate wildlife, livestock or children and pets in domestic settings.


Pesticides , Water Pollutants, Chemical/analysis , Acetaldehyde/analogs & derivatives , Agriculture , Animals , Child , Humans
3.
Sci Total Environ ; 651(Pt 2): 2927-2942, 2019 Feb 15.
Article En | MEDLINE | ID: mdl-30463144

The contamination of soil and vegetables with trace elements is one of the most severe ecological problems in developing industrialized countries. Trace elements are released into the environment from natural and anthropogenic activities and accumulated in soil and vegetables through various pathways which ultimately affects the human health. The present review aimed at 1) discussing the anthropogenic sources in detail, 2) describing the bioaccumulation, absorption, and transportation of trace elements, 3) exploring the options to reduce the health risk due to consumption of contaminated vegetables, 4) identifying the research and policy gaps related to soil and vegetables contamination with trace elements. Besides these objectives, the present review also detailed the several factors which affect the rate of accumulation, toxicity mechanism, and effects of trace elements on vegetables and humans. Various toxicity indices for health risk assessment have also been described. It is suggested to evaluate the trace metals concentration in irrigation water and soil prior to plant the vegetable to minimize the possible contamination.


Soil Pollutants/analysis , Trace Elements/analysis , Vegetables/chemistry , Dietary Exposure/statistics & numerical data , Environmental Restoration and Remediation/methods , Humans , Metals, Heavy , Risk Assessment , Soil , Soil Pollutants/metabolism , Soil Pollutants/toxicity , Trace Elements/metabolism , Trace Elements/toxicity , Vegetables/physiology
4.
Sci Total Environ ; 618: 1096-1113, 2018 Mar 15.
Article En | MEDLINE | ID: mdl-29074240

Intermittent rivers and ephemeral streams (IRES) are common across Europe and dominate some Mediterranean river networks. In all climate zones, IRES support high biodiversity and provide ecosystem services. As dynamic ecosystems that transition between flowing, pool, and dry states, IRES are typically poorly represented in biomonitoring programmes implemented to characterize EU Water Framework Directive ecological status. We report the results of a survey completed by representatives from 20 European countries to identify current challenges to IRES status assessment, examples of best practice, and priorities for future research. We identify five major barriers to effective ecological status classification in IRES: 1. the exclusion of IRES from Water Framework Directive biomonitoring based on their small catchment size; 2. the lack of river typologies that distinguish between contrasting IRES; 3. difficulties in defining the 'reference conditions' that represent unimpacted dynamic ecosystems; 4. classification of IRES ecological status based on lotic communities sampled using methods developed for perennial rivers; and 5. a reliance on taxonomic characterization of local communities. Despite these challenges, we recognize examples of innovative practice that can inform modification of current biomonitoring activity to promote effective IRES status classification. Priorities for future research include reconceptualization of the reference condition approach to accommodate spatiotemporal fluctuations in community composition, and modification of indices of ecosystem health to recognize both taxon-specific sensitivities to intermittence and dispersal abilities, within a landscape context.


Ecosystem , Environmental Monitoring , Rivers , Conservation of Natural Resources , Ecology , Europe
5.
Sci Total Environ ; 556: 207-18, 2016 Jun 15.
Article En | MEDLINE | ID: mdl-26974569

Non-native species represent a significant threat to indigenous biodiversity and ecosystem functioning worldwide. It is widely acknowledged that invasive crayfish species may be instrumental in modifying benthic invertebrate community structure, but there is limited knowledge regarding the temporal and spatial extent of these effects within lotic ecosystems. This study investigates the long term changes to benthic macroinvertebrate community composition following the invasion of signal crayfish, Pacifastacus leniusculus, into English rivers. Data from long-term monitoring sites on 7 rivers invaded by crayfish and 7 rivers where signal crayfish were absent throughout the record (control sites) were used to examine how invertebrate community composition and populations of individual taxa changed as a result of invasion. Following the detection of non-native crayfish, significant shifts in invertebrate community composition were observed at invaded sites compared to control sites. This pattern was strongest during autumn months but was also evident during spring surveys. The observed shifts in community composition following invasion were associated with reductions in the occurrence of ubiquitous Hirudinea species (Glossiphonia complanata and Erpobdella octoculata), Gastropoda (Radix spp.), Ephemeroptera (Caenis spp.), and Trichoptera (Hydropsyche spp.); although variations in specific taxa affected were evident between regions and seasons. Changes in community structure were persistent over time with no evidence of recovery, suggesting that crayfish invasions represent significant perturbations leading to permanent changes in benthic communities. The results provide fundamental knowledge regarding non-native crayfish invasions of lotic ecosystems required for the development of future management strategies.


Astacoidea/physiology , Ecosystem , Introduced Species , Invertebrates/physiology , Animals , Biodiversity , Environmental Monitoring
...