Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 16 de 16
1.
Int J Nanomedicine ; 19: 2733-2754, 2024.
Article En | MEDLINE | ID: mdl-38505165

Nanohydrogels (NH) are biodegradable polymers that have been extensively studied and utilized for various biomedical applications. Drugs in a topical medication are absorbed via the skin and carried to the intended location, where they are metabolized and eliminated from the body. With a focus on their pertinent contemporary treatments, this review aims to give a complete overview of recent advances in the creation and application of polymer NH in biomedicine. We will explore the key features that have driven advances in nanotechnology and discuss the significance of nanohydrogel-based formulations as vehicles for delivering therapeutic agents topically. The review will also cover the latest findings and references from the literature to support the advancements in nanotechnological technology related to the preparation and application of NH. In addition, we will also discuss the unique properties and potential applications of NH as drug delivery systems (DDS) for skin applications, underscoring their potential for effective topical therapeutic delivery. The challenge lies in efficiently delivering drugs through the skin's barrier to specific areas with high control. Environmentally sensitive systems, like polymer-based NH, show promise in treating dermatological conditions. Polymers are pivotal in developing these drug delivery systems, with NH offering advantages such as versatile drug loading, controlled release, and enhanced skin penetration.


Drug Delivery Systems , Skin , Skin/metabolism , Polymers/metabolism , Pharmaceutical Preparations , Nanotechnology
2.
Nanotechnol Sci Appl ; 17: 41-57, 2024.
Article En | MEDLINE | ID: mdl-38469157

Chitosan is a functional polymer in the pharmaceutical field, including for nanoparticle drug delivery systems. Chitosan-based nanoparticles are a promising carrier for a wide range of therapeutic agents and can be administered in various routes. Solubility is the main problem for its production and utilization in large-scale industries. Chitosan modifications have been employed to enhance its solubility, including chemical modification. Many reviews have reported the chemical modification but have not focused on the specific characteristics obtained. This review focused on the modification to improve chitosan solubility. Additionally, this review also focused on the application of chitosan derivatives in nanoparticle drug delivery systems since very few similar reviews have been reported. The specific method for chitosan derivative-based nanoparticles was also reported and the latest report of chitosan, chitosan derivative, and chitosan toxicity were also described.

3.
Nanotechnol Sci Appl ; 17: 21-40, 2024.
Article En | MEDLINE | ID: mdl-38314401

Currently, protein-based nanoparticles are in high demand as drug delivery systems due to their exceptional qualities, including nontoxicity, nonantigenicity, and biodegradability. Other qualities include high nutritional value, abundance of renewable resources, excellent drug binding capacity, greater stability during storage and in vivo, as well as ease of upgrading during manufacture. Examples of protein suitable for this purpose include ovalbumin (OVA) derived from egg white, human serum albumin (HSA), and bovine serum albumin (BSA). To create albumin nanoparticles, six different processes have been investigated in depth and are frequently used in drug delivery systems. These included desolvation, thermal gelation, emulsification, NAB technology, self-assembly, and nanospray drying. Several experimental conditions in the synthesis of albumin nanoparticles can affect the physicochemical characterization. Therefore, this study aimed to provide an overview of various experimental conditions capable of affecting the physicochemical characteristics of BSA nanoparticles formed using the desolvation method. By considering the variation in optimal experimental conditions, a delivery system of BSA nanoparticles with the best physicochemical characterization results could be developed.

4.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 08.
Article En | MEDLINE | ID: mdl-38139827

With the development of technology, natural material components are widely used in various fields of science. Natural product components in phytochemical compounds are secondary metabolites produced by plants; they have been shown to have many pharmacological activities. Phytochemical compounds obtained from plants have an important role in herbal medicine. Herbal medicine is safer and cheaper than synthetic medicine. However, herbal medicines have weaknesses, such as low solubility, less stability, low bioavailability, and experiencing physical and chemical degradation, reducing their pharmacological activity. Recent herbal nano-delivery developments are mostly plant-based. A nanotechnology-based system was developed to deliver herbal therapies with better bioavailability, namely the nanohydrogel system. Nanohydrogel is a delivery system that can overcome the disadvantages of using herbal compounds because it can increase solubility, increase pharmacological activity and bioavailability, reduce toxicity, slow delivery, increase stability, improve biodistribution, and prevent physical or chemical degradation. This review article aimed to provide an overview of recent advances in developing nanohydrogel formulations derived from natural ingredients to increase solubility and pharmacological activity, as well as a summary of the challenges faced by delivery systems based on nanohydrogel derived from natural materials. A total of 25 phytochemicals derived from natural products that have been developed into nanohydrogel were proven to increase the activity and solubility of these chemical compounds.

5.
Pak J Biol Sci ; 26(4): 148-158, 2023 Mar.
Article En | MEDLINE | ID: mdl-37779329

<b>Background and Objective:</b> <i>Schleichera oleosa</i> (Sapindaceae) has been reported to be useful in traditional medicine and it has some potential pharmacological activities, such as anticancer, antioxidant and antimicrobial activities. This study aimed to assess its safety to provide complete data required for the development of <i>S. oleosa</i> as herbal medicine. <b>Materials and Methods:</b> The safety assessment of the extract was carried out by testing acute and subchronic toxicity in mice (male and female) and rats (male and female), respectively. The doses used in the acute toxicity test were 1000, 2000, 3000, 4000 and 5000 mg kg<sup>1</sup> of body weight and those in the subchronic treatment were 100, 200 and 400 mg kg<sup>1</sup> of body weight. <b>Results:</b> In the acute toxicity test, the <i>S. oleosa</i> leaf extract at all doses indicated that the LD<sub>50</sub> value of the extract was higher than 5000 mg kg<sup>1</sup> b.wt., which suggested that this extract is practically non-toxic according to the toxicity criteria. Furthermore, the subchronic toxicity test found that the administration of the extract to male and female rats at a daily dose of 100 and 200 mg kg<sup>1</sup> b.wt., for 90 days did not cause any significant change in blood haematology, blood biochemistry and histopathological picture of liver, kidney, heart, lymph and lung. Despite there being a significant increase in white blood counts, long-term use of the <i>S. oleosa</i> leaf extract is relatively safe. <b>Conclusion:</b> The results provided evidence regarding the potential of <i>S. oleosa</i> leaves to be used as herbal medicine. However, further research needs to be done to verify that activity and its safety in long-term use.


Plant Extracts , Plant Leaves , Sapindaceae , Animals , Female , Male , Mice , Rats , Body Weight , Plant Extracts/toxicity , Sapindaceae/chemistry , Plant Leaves/chemistry
6.
Pharmaceuticals (Basel) ; 16(9)2023 Sep 14.
Article En | MEDLINE | ID: mdl-37765107

The process of skin aging is a physiological phenomenon that can not be avoided. According to global population data, the rate of aging increases by approximately 13% every year. The impact of skin aging has become a significant concern and challenge for developed countries. Consequently, there has been a search for potential new anti-aging agents. This review aims to provide an overview of the current research status of plants of the Anak Dalam Tribe (Indonesian: Suku Anak Dalam [SAD]; referred to as SAD henceforth) in Jambi Province, Indonesia, for the development of potential new anti-aging agents. One such discovery is a product derived from natural ingredients with the ability to prevent premature aging. These new anti-aging plants have been used for centuries by the Anak Dalam tribe, for treating skin diseases and maintaining skin health through traditional remedies. Recent research on herbal formulations used by the SAD community in Indonesia for skin beauty treatments, reported by Research on Medicinal Plants and Herbs or RISTOJA, indicates that 64 plant species are used for skin care. Among these plants, Toona sinensis, Curcuma heyneana, Curcuma zedoaria, Curcuma longa, and Kaempferia rotunda are the most commonly used medicinal plants with anti-aging properties. T. sinensis is a tree, while the others are herbs. T. sinensis shows the highest potential for development as an anti-aging agent, with its extracts, active fractions, and bioactive quercetin isolates known to possess strong anti-aging activities both in vitro and in vivo. Furthermore, C. heyneana, C. longa, C. zedoaria, and K. rotunda also show potential for further research, and three of them have demonstrated good potential for in vivo anti-aging activities. Only K. rotunda demonstrates relatively weaker antioxidant activity compared to T. sinensis, C. heyneana, C. longa, and C. zedoaria. Nevertheless, K. rotunda can still be developed to search for potential opportunities as agents with other activities, while T. sinensis, C. heyneana, C. longa, and C. zedoaria in the findings could be an opportunity to explore the potential of new anti-aging agents. In conclusion, of the five medicinal plants traditionally used by the SAD in Jambi, Indonesia, C. longa has received the most extensive research and shows potential for the development of anti-aging solutions. C. zedoaria, C. heyneana and K. rotunda show good potential for in vivo anti-aging activity. T. sinensis is the least-studied medicinal plant. Nevertheless, it has potential for development, as it is widely used by the SAD community for both traditional medicine and skin care.

7.
Gels ; 9(5)2023 May 10.
Article En | MEDLINE | ID: mdl-37232989

The effects of alkali type and pH on the physical properties of carrageenan have been extensively studied. However, their effects on certain characteristics of solid-state properties of carrageenan have not been identified. This research aimed to investigate the effect of alkaline solvent type and pH on the solid physical properties of carrageenan isolated from Eucheuma cottonii. Carrageenan was extracted from the algae using NaOH, KOH, and Ca(OH)2 at pHs of 9, 11, and 13. Based on the results of preliminary characterization, including yield, ash content, pH, sulphate content, viscosity, and gel strength, it was found that all samples followed Food and Agriculture Organization (FAO) specifications. The swelling capacity of carrageenan based on the type of alkali was KOH > NaOH > Ca(OH)2. The FTIR spectra of all samples were in agreement with that of standard carrageenan. The molecular weight (MW) of carrageenan using KOH as the alkali followed the order pH 13 > pH 9 > pH 11, while using NaOH, the order was pH 9 > pH 13 > pH 11, and while using Ca(OH)2, the order was pH 13 > pH 9 > pH 11. The results of the solid-state physical characterization of carrageenan with the highest MW in each type of alkali showed that the morphology of carrageenan using Ca(OH)2 has a cubic shape and is more crystal-like. The order of crystallinity of carrageenan using different types of alkali was Ca(OH)2 (14.44%) > NaOH (9.80%) > KOH (7.91%), while the order of density was Ca(OH)2 > KOH > NaOH. The order of solid fraction (SF) of the carrageenan was KOH > Ca(OH)2 > NaOH, while the tensile strength when using KOH was 1.17, when using NaOH it was 0.08, and while using Ca(OH)2, it was 0.05. The bonding index (BI) of carrageenan using KOH = 0.04, NaOH = 0.02, and Ca(OH)2 = 0.02. The brittle fracture index (BFI) of the carrageenan was KOH = 0.67, NaOH = 0.26, and Ca(OH)2 = 0.04. The order of carrageenan solubility in water was NaOH > KOH > Ca(OH)2. These data can be used as the basis for the development of carrageenan for excipients in solid dosage forms.

8.
BMC Med Educ ; 23(1): 367, 2023 May 23.
Article En | MEDLINE | ID: mdl-37221539

The Covid-19 outbreak necessitated the implementation of social distancing mechanisms, such as the enforcement of lockdowns in numerous nations. The lockdown has disrupted many parts of everyday life, but this unusual event has particularly affected education. The temporary closure of educational institutions ushered in dozens of new reforms, including a shift into the distance and online learning. This study investigates the transition from traditional education in physical classrooms to online and distance and online learning in pharmacy education during Covid-19, especially about the challenges and benefits of distance and online learning. We did Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) for literature sources between 2020 and 2022 (n.14). The study elaborates on how the transition has influenced teachers and students of pharmacy education. The research also summarizes several recommendations, which may assist in minimizing the adverse impacts of lockdown and encourage streamlined processes to distance and online learning, particularly in pharmacy education.


COVID-19 , Education, Distance , Education, Pharmacy , Humans , Communicable Disease Control , Disease Outbreaks
9.
Article En | MEDLINE | ID: mdl-36901282

This study aimed to evaluate pharmacy students' perceptions regarding the correlations among the quality of faculty members, institutional resources, an integrated-based curriculum of pharmaceutical dosage forms (ICPDF), and learning outcome attainment. The current study participants have attended courses (semesters 2 to 6) through the ICPDF in the Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Indonesia. We distributed survey instruments to 212 pharmacy undergraduate students after one year of the curriculum implementation. We asked the students to fill in the instrument in which the indicators consist of a 7-point Likert scale. The data were analyzed using SmartPLS, which included measurement and structural models through PLS-SEM. The findings informed that the quality of faculty members and institutional resources significantly predict ICPDF. Similarly, ICPDF plays a significant role in affecting learning outcome attainment. The quality of faculty members and institutional resources were not related to learning outcome attainment. Significances of differences were informed among students' years in university regarding learning outcome attainment and ICPDF. However, insignificant differences emerged based on gender. The findings demonstrate the benefits of using the PLS-SEM approach to create a valid and reliable model, assessing the correlations between independent variables with the ICPDF and learning outcome attainment as two dependent variables.


Education, Pharmacy , Pharmacy , Humans , Learning , Curriculum , Pharmaceutical Preparations
10.
Nanomaterials (Basel) ; 12(22)2022 Nov 18.
Article En | MEDLINE | ID: mdl-36432358

Phytochemicals or secondary metabolites are substances produced by plants that have been shown to have many biological activities, providing a scientific basis for using herbs in traditional medicine. In addition, the use of herbs is considered to be safe and more economical compared to synthetic medicine. However, herbal medicines have disadvantages, such as having low solubility, stability, and bioavailability. Some of them can undergo physical and chemical degradation, which reduces their pharmacological activity. In recent decades, nanotechnology-based herbal drug formulations have attracted attention due to their enhanced activity and potential for overcoming the problems associated with herbal medicine. Approaches using nanotechnology-based delivery systems that are biocompatible, biodegradable, and based on lipids, polymers, or nanoemulsions can increase the solubility, stability, bioavailability, and pharmacological activity of herbals. This review article aims to provide an overview of the latest advances in the development of nanotechnology-based herbal drug formulations for increased activity, as well as a summary of the challenges these delivery systems for herbal medicines face.

11.
J Microencapsul ; 39(6): 512-521, 2022 Sep.
Article En | MEDLINE | ID: mdl-36089916

AIM: This study aimed to investigate the effect of polymer type on solidification rate of PLGA polymeric microparticles and particle size/distribution of the emulsion droplets/hardened PLGA polymeric microparticles during solvent evaporation process using FBRM (Focussed Beam Reflectance Measurement). METHODS: PLGA polymeric microparticles were prepared by an O/W solvent evaporation method using various PLGA polymers, including PLGA Resomer® RG503H, RG502H and RG752H. The particle size mean, chord length distribution (CLD), and chord count of the emulsion droplets/hardened microparticles were monitored by FBRM. The morphology of polymeric microparticles were characterised by optical microscopy and scanning electron microscopy (SEM). RESULTS: The transformation of the emulsion droplets into solid microparticles occurred within the first 30 (± 1.04), 34 (± 1.15) and 37 (± 0.82) min and square weighted mean chord lengths are 64.08 (± 3.18), 52.36 (± 5.27) and 42.18 (± 4.61) µm when PLGA Resomer® RG503H, RG502H and RG752H were used respectively. Larger square weighted mean chord length of PLGA polymeric microparticles gave lower chord counts. PLGA RG752H microparticles gave smallest square weighted mean chord length and the chord counts was the highest. The CLDs measured by FBRM showed that a larger particle size mean gave longer CLD and a lower peak of particle number. SEM data revealed that the morphology of microparticles was influenced by type and physical properties of polymer. CONCLUSIONS: FBRM can be employed for online monitoring of the shift in the microparticle CLD and detect transformation of the emulsion droplets into solid microparticles during the solvent evaporation process. The microparticle CLD and transformation process were strongly influenced by polymer type.


Lactic Acid , Polyglycolic Acid , Polylactic Acid-Polyglycolic Acid Copolymer , Solvents , Emulsions , Particle Size , Microspheres
12.
Polymers (Basel) ; 14(16)2022 Aug 21.
Article En | MEDLINE | ID: mdl-36015674

Low molecular weight chitosan (LMWC) has higher solubility and lower viscosity allowing for a wider pharmaceutical application compared to high molecular weight chitosan. LMWC chitosan can be obtained through a chitosan depolymerization process. This research aimed to produce LWMC using the combination of formic acid and ultrasonication method with the optimal condition of the depolymerization process. The chitosan depolymerization method was performed by combining formic acid and ultrasonication. The optimum conditions of the depolymerization process were obtained using the Box-Behnken design. The LMWC obtained from depolymerization was characterized to identify its yield, degree of deacetylation, the molecular weight, structure, morphology, thermal behavior, and crystallinity index. Results: The characterization results of LWMC obtained from the depolymerization process using the optimum conditions showed that the yield was 89.398%; the degree of deacetylation was 98.076%; the molecular weight was 32.814 kDa; there was no change in the chemical structure, LWMC had disorganized shape, there was no change in the thermal behavior, and LWMC had a more amorphous shape compared to native chitosan. Conclusion: The production of LWMC involving depolymerization in the presence of weak acid and ultrasonication can be developed by using the optimal condition of the depolymerization process.

13.
Sci Rep ; 12(1): 10360, 2022 06 20.
Article En | MEDLINE | ID: mdl-35726009

The objective of this study was to investigate the effect of dispersion time interval (DTI) on physicochemical properties of drug following the incorporation of propranolol HCl (Pro) and carbamazepine (CBZ) within ethyl cellulose (EC) microparticle blends using solvent evaporation method. The first Pro emulsion and second CBZ oil phase were dispersed in an external aqueous phase, with DTI of 0 and 60 min. The morphology of microparticle blends were characterized by SEM. The particle size mean of the emulsion droplets/hardened microparticles were monitored by FBRM. Encapsulation efficiency (EE) and in vitro drug release were also investigated. The resulting microparticle blends were spherical and formed two populations. The particle size mean of microparticle blends ranged from 113.27 µm to 122.42 µm. The EE was 77.28% to 78.64% for Pro and 96.48% to 98.64% for CBZ. FBRM studies showed that the size of microparticle blend prepared as W/O/W (Pro) and O/W (CBZ) system with DTI of 60 min and stirring time 4 h were larger than those prepared with DTI of 0 min. In vitro drug release studies after 28 days that revealed the CBZ release (58.72%) was faster than Pro release (43.16%). Investigation on surface morphology by SEM showed that the second drug CBZ which added as the oil phase in the W/O/W emulsion system had blocked the pores on the surface Pro microparticles prepared from the first primary emulsion, therefore affecting the drug release. This blocking effects of second drug (CBZ) on first emulsion microparticles (Pro) depended on the DTI. This phenomenon is only applicable if the first primary emulsion is W/O/W system.


Carbamazepine , Propranolol , Emulsions/chemistry , Microspheres , Particle Size , Propranolol/chemistry
14.
Sci Rep ; 11(1): 19390, 2021 Sep 29.
Article En | MEDLINE | ID: mdl-34588571

The online real-time particle size analysis of the microencapsules manufacturing process using the continuous solvent evaporation method was performed using focused beam reflectance measurement (FBRM). In this paper, we use FBRM measurements to investigate the effects of polymer type and compare the size distributions to those obtained using other sizing methods such as optical microscope and laser diffraction. FBRM was also utilized to measure the length-weighted chord length distribution (CLD) and particle size distribution (PSD) online during particle solidification, which could not be done with laser diffraction or nested sieve analysis. The chord lengths and CLD data were taken at specific times using an online FBRM probe mounted below the microparticle. The timing of the FBRM determinations was coordinated with the selection of microparticle samples for particle size analysis by optical microscope and laser diffraction calculation as a reference. For all three produced batches tested, FBRM, laser diffraction, and sieve analysis yielded similar results. Hardening time for the transformation of emulsion droplets into solid microparticles occurred within the first 10.5, 19, 25, 30, and 55 min, according to FBRM results. The FBRM CLDs revealed that a larger particle size mean resulted in a longer CLD and a lower peak of particle number. The FBRM data revealed that the polymer type had a significant impact on microparticle CLD and the transformation process.

15.
Toxicol Rep ; 7: 649-657, 2020.
Article En | MEDLINE | ID: mdl-32461915

Increasing incidence of antibiotic resistance necessitates the development of more potent antibiotics. The aim of this work was to evaluate the antibacterial activity of Cassia fistula L. barks as an alternative agent for resistant pathogenic bacteria. The C. fistula barks were extracted with ethanol, followed by partition of the extract to give n-hexane, ethyl acetate and water fractions. An in vitro antibacterial assay was conducted to evaluate inhibitory activity of the extract and fractions against Salmonella typhosa and Shigella dysenteriae. An in vivo antibacterial activity was examined using S. typhosa-infected mouse models, in which the colony number of S. typhosa were counted from the infected rats' feces. Assesment on safety of the extract was conducted by a subchronic toxicity test which mainly examined alteration occured in biochemical parameters and hystopatological conditions of livers and kidneys. The results showed that the ethanol extract inhibited the growth of both S. typhosa and S. dysenteriae with the MIC of 0.3125% w/v, and the ethyl acetate fraction with the MIC of 0.625% b/v. In the in vivo antibacterial assay, the extract at three doses decreased the colony number of S. typhosa significantly, and after the fourth to sixth days, the precentage of decrease reached more than 90% by 1000 mg/kg dose. The subchronic toxicity test revealed that after the extract exposured for 90 days, a dose of 1000 mg/kg induced liver and kidney damages histologically, however, it returned to normal condition after 30 days of recovery. The results of this study indicated that the extract of C. fistula L. barks had potent in vivo antibacterial activity against S. typhosa as sample of resistant bacteria, and is safe to be used as a herbal medicine, preferably at a dose lower than 1000 mg/kg.

16.
Int J Pharm ; 577: 119050, 2020 Mar 15.
Article En | MEDLINE | ID: mdl-31991186

The aim of this work was to develop a mathematical model to estimate the drug release from a conventional single-compartment reservoir pellet and extend its applicability to multi-compartment reservoir pellets. Conventional pellets were prepared by layering the drug onto starter-core then applying various ethylcellulose/HPC coatings for drug release control. Multi-layered pellets comprised a first drug layer of propranolol HCl (D1) followed by a first controlled release coating (C1) and consecutively a second drug layer of carbamazepine or caffeine (D2) and then a second controlled-release coating (C2). Drug release from single- and multi-compartment pellets generally increased with an increase of the water-soluble HPC in the coatings. The response described a sigmoidal curve, which agreed with a cumulative normal distribution function. The developed mathematical model facilitated quantification of the drug release of pellets as a function of the porogen content and the coating level. Additionally, the model was applied successfully in multi-compartment pellets to calculate theses effects on the release of drugs with a broad range of aqueous solubility.


Cellulose/analogs & derivatives , Drug Carriers/chemistry , Models, Theoretical , Caffeine/administration & dosage , Caffeine/chemistry , Carbamazepine/administration & dosage , Carbamazepine/chemistry , Cellulose/chemistry , Chemistry, Pharmaceutical , Delayed-Action Preparations , Drug Liberation , Porosity , Propranolol/administration & dosage , Propranolol/chemistry , Solubility , Water/chemistry
...