Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 119
2.
bioRxiv ; 2023 Nov 16.
Article En | MEDLINE | ID: mdl-38014050

Background: Despite the critical role of the cardiovascular system, our understanding of its cellular and transcriptional diversity remains limited. We therefore sought to characterize the cellular composition, phenotypes, molecular pathways, and communication networks between cell types at the tissue and sub-tissue level across the cardiovascular system of the healthy Wistar rat, an important model in preclinical cardiovascular research. We obtained high quality tissue samples under controlled conditions that reveal a level of cellular detail so far inaccessible in human studies. Methods and Results: We performed single nucleus RNA-sequencing in 78 samples in 10 distinct regions including the four chambers of the heart, ventricular septum, sinoatrial node, atrioventricular node, aorta, pulmonary artery, and pulmonary veins (PV), which produced an aggregate map of 505,835 nuclei. We identified 26 distinct cell types and additional subtypes, including a number of rare cell types such as PV cardiomyocytes and non-myelinating Schwann cells (NMSCs), and unique groups of vascular smooth muscle cells (VSMCs), endothelial cells (ECs) and fibroblasts (FBs), which gave rise to a detailed cell type distribution across tissues. We demonstrated differences in the cellular composition across different cardiac regions and tissue-specific differences in transcription for each cell type, highlighting the molecular diversity and complex tissue architecture of the cardiovascular system. Specifically, we observed great transcriptional heterogeneities among ECs and FBs. Importantly, several cell subtypes had a unique regional localization such as a subtype of VSMCs enriched in the large vasculature. We found the cellular makeup of PV tissue is closer to heart tissue than to the large arteries. We further explored the ligand-receptor repertoire across cell clusters and tissues, and observed tissue-enriched cellular communication networks, including heightened Nppa - Npr1/2/3 signaling in the sinoatrial node. Conclusions: Through a large single nucleus sequencing effort encompassing over 500,000 nuclei, we broadened our understanding of cellular transcription in the healthy cardiovascular system. The existence of tissue-restricted cellular phenotypes suggests regional regulation of cardiovascular physiology. The overall conservation in gene expression and molecular pathways across rat and human cell types, together with our detailed transcriptional characterization of each cell type, offers the potential to identify novel therapeutic targets and improve preclinical models of cardiovascular disease.

3.
Nat Methods ; 20(9): 1323-1335, 2023 09.
Article En | MEDLINE | ID: mdl-37550580

Droplet-based single-cell assays, including single-cell RNA sequencing (scRNA-seq), single-nucleus RNA sequencing (snRNA-seq) and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq), generate considerable background noise counts, the hallmark of which is nonzero counts in cell-free droplets and off-target gene expression in unexpected cell types. Such systematic background noise can lead to batch effects and spurious differential gene expression results. Here we develop a deep generative model based on the phenomenology of noise generation in droplet-based assays. The proposed model accurately distinguishes cell-containing droplets from cell-free droplets, learns the background noise profile and provides noise-free quantification in an end-to-end fashion. We implement this approach in the scalable and robust open-source software package CellBender. Analysis of simulated data demonstrates that CellBender operates near the theoretically optimal denoising limit. Extensive evaluations using real datasets and experimental benchmarks highlight enhanced concordance between droplet-based single-cell data and established gene expression patterns, while the learned background noise profile provides evidence of degraded or uncaptured cell types.


RNA, Small Nuclear , Software , Sequence Analysis, RNA/methods , Single-Cell Analysis/methods , Gene Expression Profiling/methods
4.
Nature ; 618(7965): 616-624, 2023 Jun.
Article En | MEDLINE | ID: mdl-37258680

Mapping gene networks requires large amounts of transcriptomic data to learn the connections between genes, which impedes discoveries in settings with limited data, including rare diseases and diseases affecting clinically inaccessible tissues. Recently, transfer learning has revolutionized fields such as natural language understanding1,2 and computer vision3 by leveraging deep learning models pretrained on large-scale general datasets that can then be fine-tuned towards a vast array of downstream tasks with limited task-specific data. Here, we developed a context-aware, attention-based deep learning model, Geneformer, pretrained on a large-scale corpus of about 30 million single-cell transcriptomes to enable context-specific predictions in settings with limited data in network biology. During pretraining, Geneformer gained a fundamental understanding of network dynamics, encoding network hierarchy in the attention weights of the model in a completely self-supervised manner. Fine-tuning towards a diverse panel of downstream tasks relevant to chromatin and network dynamics using limited task-specific data demonstrated that Geneformer consistently boosted predictive accuracy. Applied to disease modelling with limited patient data, Geneformer identified candidate therapeutic targets for cardiomyopathy. Overall, Geneformer represents a pretrained deep learning model from which fine-tuning towards a broad range of downstream applications can be pursued to accelerate discovery of key network regulators and candidate therapeutic targets.


Biology , Machine Learning , Neural Networks, Computer , Humans , Biology/methods , Single-Cell Gene Expression Analysis , Datasets as Topic , Chromatin/genetics , Chromatin/metabolism , Cardiomyopathies/drug therapy , Cardiomyopathies/genetics , Cardiomyopathies/metabolism
5.
J Am Coll Cardiol ; 81(14): 1320-1335, 2023 04 11.
Article En | MEDLINE | ID: mdl-37019578

BACKGROUND: As the largest conduit vessel, the aorta is responsible for the conversion of phasic systolic inflow from ventricular ejection into more continuous peripheral blood delivery. Systolic distention and diastolic recoil conserve energy and are enabled by the specialized composition of the aortic extracellular matrix. Aortic distensibility decreases with age and vascular disease. OBJECTIVES: In this study, we sought to discover epidemiologic correlates and genetic determinants of aortic distensibility and strain. METHODS: We trained a deep learning model to quantify thoracic aortic area throughout the cardiac cycle from cardiac magnetic resonance images and calculated aortic distensibility and strain in 42,342 UK Biobank participants. RESULTS: Descending aortic distensibility was inversely associated with future incidence of cardiovascular diseases, such as stroke (HR: 0.59 per SD; P = 0.00031). The heritabilities of aortic distensibility and strain were 22% to 25% and 30% to 33%, respectively. Common variant analyses identified 12 and 26 loci for ascending and 11 and 21 loci for descending aortic distensibility and strain, respectively. Of the newly identified loci, 22 were not significantly associated with thoracic aortic diameter. Nearby genes were involved in elastogenesis and atherosclerosis. Aortic strain and distensibility polygenic scores had modest effect sizes for predicting cardiovascular outcomes (delaying or accelerating disease onset by 2%-18% per SD change in scores) and remained statistically significant predictors after accounting for aortic diameter polygenic scores. CONCLUSIONS: Genetic determinants of aortic function influence risk for stroke and coronary artery disease and may lead to novel targets for medical intervention.


Aortic Diseases , Stroke , Humans , Aorta, Thoracic , Aorta , Aortic Diseases/pathology , Magnetic Resonance Imaging
6.
medRxiv ; 2023 Feb 23.
Article En | MEDLINE | ID: mdl-36865094

Background: Acute decompensation is associated with increased mortality in heart failure (HF) patients, though the underlying etiology remains unclear. Extracellular vesicles (EVs) and their cargo may mark specific cardiovascular physiologic states. We hypothesized that EV transcriptomic cargo, including long non-coding RNAs (lncRNAs) and mRNAs, is dynamic from the decompensated to recompensated HF state, reflecting molecular pathways relevant to adverse remodeling. Methods: We examined differential RNA expression from circulating plasma extracellular RNA in acute HF patients at hospital admission and discharge alongside healthy controls. We leveraged different exRNA carrier isolation methods, publicly available tissue banks, and single nuclear deconvolution of human cardiac tissue to identify cell and compartment specificity of the topmost significantly differentially expressed targets. EV-derived transcript fragments were prioritized by fold change (-1.5 to + 1.5) and significance (<5% false discovery rate), and their expression in EVs was subsequently validated in 182 additional patients (24 control; 86 HFpEF; 72 HFrEF) by qRT-PCR. We finally examined the regulation of EV-derived lncRNA transcripts in human cardiac cellular stress models. Results: We identified 138 lncRNAs and 147 mRNAs (present mostly as fragments in EVs) differentially expressed between HF and control. Differentially expressed transcripts between HFrEF vs. control were primarily cardiomyocyte derived, while those between HFpEF vs. control originated from multiple organs and different (non-cardiomyocyte) cell types within the myocardium. We validated 5 lncRNAs and 6 mRNAs to differentiate between HF and control. Of those, 4 lncRNAs (AC092656.1, lnc-CALML5-7, LINC00989, RMRP) were altered by decongestion, with their levels independent of weight changes during hospitalization. Further, these 4 lncRNAs dynamically responded to stress in cardiomyocytes and pericytes in vitro , with a directionality mirroring the acute congested state. Conclusion: Circulating EV transcriptome is significantly altered during acute HF, with distinct cell and organ specificity in HFpEF vs. HFrEF consistent with a multi-organ vs. cardiac origin, respectively. Plasma EV-derived lncRNA fragments were more dynamically regulated with acute HF therapy independent of weight change (relative to mRNAs). This dynamicity was further demonstrated with cellular stress in vitro . Prioritizing transcriptional changes in plasma circulating EVs with HF therapy may be a fruitful approach to HF subtype-specific mechanistic discovery. CLINICAL PERSPECTIVE: What is new?: We performed extracellular transcriptomic analysis on the plasma of patients with acute decompensated heart failure (HFrEF and HFpEF) before and after decongestive efforts.Long non-coding RNAs (lncRNAs) within extracellular vesicles (EVs) changed dynamically upon decongestion in concordance with changes within human iPSC-derived cardiomyocytes under stress.In acute decompensated HFrEF, EV RNAs are mainly derived from cardiomyocytes, whereas in HFpEF, EV RNAs appear to have broader, non-cardiomyocyte origins.What are the clinical implications?: Given their concordance between human expression profiles and dynamic in vitro responses, lncRNAs within EVs during acute HF may provide insight into potential therapeutic targets and mechanistically relevant pathways. These findings provide a "liquid biopsy" support for the burgeoning concept of HFpEF as a systemic disorder extending beyond the heart, as opposed to a more cardiac-focused physiology in HFrEF.

7.
Nat Genet ; 55(4): 544-548, 2023 04.
Article En | MEDLINE | ID: mdl-36959364

With the emergence of large-scale sequencing data, methods for improving power in rare variant association tests are needed. Here we show that adjusting for common variant polygenic scores improves yield in gene-based rare variant association tests across 65 quantitative traits in the UK Biobank (up to 20% increase at α = 2.6 × 10-6), without marked increases in false-positive rates or genomic inflation. Benefits were seen for various models, with the largest improvements seen for efficient sparse mixed-effects models. Our results illustrate how polygenic score adjustment can efficiently improve power in rare variant association discovery.


Multifactorial Inheritance , Quantitative Trait Loci , Multifactorial Inheritance/genetics , Phenotype , Polymorphism, Single Nucleotide/genetics , Models, Genetic , Genome-Wide Association Study
8.
Cell Rep ; 42(2): 112086, 2023 02 28.
Article En | MEDLINE | ID: mdl-36790929

Ischemic cardiomyopathy (ICM) is the leading cause of heart failure worldwide, yet the cellular and molecular signature of this disease is largely unclear. Using single-nucleus RNA sequencing (snRNA-seq) and integrated computational analyses, we profile the transcriptomes of over 99,000 human cardiac nuclei from the non-infarct region of the left ventricle of 7 ICM transplant recipients and 8 non-failing (NF) controls. We find the cellular composition of the ischemic heart is significantly altered, with decreased cardiomyocytes and increased proportions of lymphatic, angiogenic, and arterial endothelial cells in patients with ICM. We show that there is increased LAMININ signaling from endothelial cells to other cell types in ICM compared with NF. Finally, we find that the transcriptional changes that occur in ICM are similar to those in hypertrophic and dilated cardiomyopathies and that the mining of these combined datasets can identify druggable genes that could be used to target end-stage heart failure.


Cardiomyopathies , Cardiomyopathy, Dilated , Heart Failure , Myocardial Ischemia , Humans , Endothelial Cells/metabolism , Myocardial Ischemia/genetics , Myocardial Ischemia/metabolism , Heart Failure/genetics , Heart Failure/metabolism , Sequence Analysis, RNA , Cardiomyopathies/genetics
9.
Circ Genom Precis Med ; 15(6): e003598, 2022 12.
Article En | MEDLINE | ID: mdl-36215124

BACKGROUND: A key goal of precision medicine is to disaggregate common, complex diseases into discrete molecular subtypes. Rare coding variants in the low-density lipoprotein receptor gene (LDLR) are identified in 1% to 2% of coronary artery disease (CAD) patients, defining a molecular subtype with risk driven by hypercholesterolemia. METHODS: To search for additional subtypes, we compared the frequency of rare, predicted loss-of-function and damaging missense variants aggregated within a given gene in 41 081 CAD cases versus 217 115 controls. RESULTS: Rare variants in LDLR were most strongly associated with CAD, present in 1% of cases and associated with 4.4-fold increased CAD risk. A second subtype was characterized by variants in endothelial nitric oxide synthase gene (NOS3), a key enzyme regulating vascular tone, endothelial function, and platelet aggregation. A rare predicted loss-of-function or damaging missense variants in NOS3 was present in 0.6% of cases and associated with 2.42-fold increased risk of CAD (95% CI, 1.80-3.26; P=5.50×10-9). These variants were associated with higher systolic blood pressure (+3.25 mm Hg; [95% CI, 1.86-4.65]; P=5.00×10-6) and increased risk of hypertension (adjusted odds ratio 1.31; [95% CI, 1.14-1.51]; P=2.00×10-4) but not circulating cholesterol concentrations, suggesting that, beyond lipid pathways, nitric oxide synthesis is a key nonlipid driver of CAD risk. CONCLUSIONS: Beyond LDLR, we identified an additional nonlipid molecular subtype of CAD characterized by rare variants in the NOS3 gene.


Coronary Artery Disease , Hypercholesterolemia , Humans , Coronary Artery Disease/genetics , Polymorphism, Genetic , Nitric Oxide , Cholesterol
10.
Arterioscler Thromb Vasc Biol ; 42(11): 1355-1374, 2022 11.
Article En | MEDLINE | ID: mdl-36172868

BACKGROUND: Mural cells in ascending aortic aneurysms undergo phenotypic changes that promote extracellular matrix destruction and structural weakening. To explore this biology, we analyzed the transcriptional features of thoracic aortic tissue. METHODS: Single-nuclear RNA sequencing was performed on 13 samples from human donors, 6 with thoracic aortic aneurysm, and 7 without aneurysm. Individual transcriptomes were then clustered based on transcriptional profiles. Clusters were used for between-disease differential gene expression analyses, subcluster analysis, and analyzed for intersection with genetic aortic trait data. RESULTS: We sequenced 71 689 nuclei from human thoracic aortas and identified 14 clusters, aligning with 11 cell types, predominantly vascular smooth muscle cells (VSMCs) consistent with aortic histology. With unbiased methodology, we found 7 vascular smooth muscle cell and 6 fibroblast subclusters. Differentially expressed genes analysis revealed a vascular smooth muscle cell group accounting for the majority of differential gene expression. Fibroblast populations in aneurysm exhibit distinct behavior with almost complete disappearance of quiescent fibroblasts. Differentially expressed genes were used to prioritize genes at aortic diameter and distensibility genome-wide association study loci highlighting the genes JUN, LTBP4 (latent transforming growth factor beta-binding protein 1), and IL34 (interleukin 34) in fibroblasts, ENTPD1, PDLIM5 (PDZ and LIM domain 5), ACTN4 (alpha-actinin-4), and GLRX in vascular smooth muscle cells, as well as LRP1 in macrophage populations. CONCLUSIONS: Using nuclear RNA sequencing, we describe the cellular diversity of healthy and aneurysmal human ascending aorta. Sporadic aortic aneurysm is characterized by differential gene expression within known cellular classes rather than by the appearance of novel cellular forms. Single-nuclear RNA sequencing of aortic tissue can be used to prioritize genes at aortic trait loci.


Aortic Aneurysm, Thoracic , Aortic Aneurysm , Humans , Genome-Wide Association Study , Muscle, Smooth, Vascular/metabolism , Actinin/genetics , RNA, Nuclear/metabolism , Aorta/pathology , Myocytes, Smooth Muscle/metabolism , Aortic Aneurysm, Thoracic/pathology , Aortic Aneurysm/metabolism , Sequence Analysis, RNA , Transforming Growth Factor beta/metabolism
11.
PLoS Genet ; 18(9): e1010294, 2022 09.
Article En | MEDLINE | ID: mdl-36048760

For Alzheimer's disease-a leading cause of dementia and global morbidity-improved identification of presymptomatic high-risk individuals and identification of new circulating biomarkers are key public health needs. Here, we tested the hypothesis that a polygenic predictor of risk for Alzheimer's disease would identify a subset of the population with increased risk of clinically diagnosed dementia, subclinical neurocognitive dysfunction, and a differing circulating proteomic profile. Using summary association statistics from a recent genome-wide association study, we first developed a polygenic predictor of Alzheimer's disease comprised of 7.1 million common DNA variants. We noted a 7.3-fold (95% CI 4.8 to 11.0; p < 0.001) gradient in risk across deciles of the score among 288,289 middle-aged participants of the UK Biobank study. In cross-sectional analyses stratified by age, minimal differences in risk of Alzheimer's disease and performance on a digit recall test were present according to polygenic score decile at age 50 years, but significant gradients emerged by age 65. Similarly, among 30,541 participants of the Mass General Brigham Biobank, we again noted no significant differences in Alzheimer's disease diagnosis at younger ages across deciles of the score, but for those over 65 years we noted an odds ratio of 2.0 (95% CI 1.3 to 3.2; p = 0.002) in the top versus bottom decile of the polygenic score. To understand the proteomic signature of inherited risk, we performed aptamer-based profiling in 636 blood donors (mean age 43 years) with very high or low polygenic scores. In addition to the well-known apolipoprotein E biomarker, this analysis identified 27 additional proteins, several of which have known roles related to disease pathogenesis. Differences in protein concentrations were consistent even among the youngest subset of blood donors (mean age 33 years). Of these 28 proteins, 7 of the 8 proteins with concentrations available were similarly associated with the polygenic score in participants of the Multi-Ethnic Study of Atherosclerosis. These data highlight the potential for a DNA-based score to identify high-risk individuals during the prolonged presymptomatic phase of Alzheimer's disease and to enable biomarker discovery based on profiling of young individuals in the extremes of the score distribution.


Alzheimer Disease , Adult , Aged , Alzheimer Disease/pathology , Biomarkers , Cross-Sectional Studies , Genome-Wide Association Study , Humans , Middle Aged , Proteomics
12.
Nat Genet ; 54(6): 792-803, 2022 06.
Article En | MEDLINE | ID: mdl-35697867

Congenital heart diseases often involve maldevelopment of the evolutionarily recent right heart chamber. To gain insight into right heart structure and function, we fine-tuned deep learning models to recognize the right atrium, right ventricle and pulmonary artery, measuring right heart structures in 40,000 individuals from the UK Biobank with magnetic resonance imaging. Genome-wide association studies identified 130 distinct loci associated with at least one right heart measurement, of which 72 were not associated with left heart structures. Loci were found near genes previously linked with congenital heart disease, including NKX2-5, TBX5/TBX3, WNT9B and GATA4. A genome-wide polygenic predictor of right ventricular ejection fraction was associated with incident dilated cardiomyopathy (hazard ratio, 1.33 per standard deviation; P = 7.1 × 10-13) and remained significant after accounting for a left ventricular polygenic score. Harnessing deep learning to perform large-scale cardiac phenotyping, our results yield insights into the genetic determinants of right heart structure and function.


Cardiomyopathy, Dilated , Heart Defects, Congenital , Cardiomyopathy, Dilated/pathology , Genome-Wide Association Study , Heart , Humans , Stroke Volume , Ventricular Function, Right
13.
Nature ; 608(7921): 174-180, 2022 08.
Article En | MEDLINE | ID: mdl-35732739

Heart failure encompasses a heterogeneous set of clinical features that converge on impaired cardiac contractile function1,2 and presents a growing public health concern. Previous work has highlighted changes in both transcription and protein expression in failing hearts3,4, but may overlook molecular changes in less prevalent cell types. Here we identify extensive molecular alterations in failing hearts at single-cell resolution by performing single-nucleus RNA sequencing of nearly 600,000 nuclei in left ventricle samples from 11 hearts with dilated cardiomyopathy and 15 hearts with hypertrophic cardiomyopathy as well as 16 non-failing hearts. The transcriptional profiles of dilated or hypertrophic cardiomyopathy hearts broadly converged at the tissue and cell-type level. Further, a subset of hearts from patients with cardiomyopathy harbour a unique population of activated fibroblasts that is almost entirely absent from non-failing samples. We performed a CRISPR-knockout screen in primary human cardiac fibroblasts to evaluate this fibrotic cell state transition; knockout of genes associated with fibroblast transition resulted in a reduction of myofibroblast cell-state transition upon TGFß1 stimulation for a subset of genes. Our results provide insights into the transcriptional diversity of the human heart in health and disease as well as new potential therapeutic targets and biomarkers for heart failure.


Cardiomyopathy, Dilated , Cardiomyopathy, Hypertrophic , Cell Nucleus , Gene Expression Profiling , Heart Failure , Single-Cell Analysis , CRISPR-Cas Systems , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/pathology , Cardiomyopathy, Hypertrophic/genetics , Cardiomyopathy, Hypertrophic/pathology , Case-Control Studies , Cell Nucleus/genetics , Cells, Cultured , Gene Knockout Techniques , Heart Failure/genetics , Heart Failure/pathology , Heart Ventricles/metabolism , Heart Ventricles/pathology , Humans , Myocardium/metabolism , Myocardium/pathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , RNA-Seq , Transcription, Genetic , Transforming Growth Factor beta1
14.
JVS Vasc Sci ; 3: 41-47, 2022.
Article En | MEDLINE | ID: mdl-35128489

Carotid plaque instability contributes to large vessel ischemic stroke. Although vascular smooth muscle cells (VSMCs) affect atherosclerotic growth and instability, no treatments aimed at improving VSMC function are available. Large genetic studies investigating atherosclerosis and carotid disease in relation to the risk of stroke have implicated polymorphisms at the HDAC9 locus. The HDAC9 protein has been shown to affect the VSMC phenotype; however, how this might affect carotid disease is unknown. We conducted a pilot investigation using single nuclei RNA sequencing of human carotid tissue to identify cells expressing HDAC9 and specifically investigate the role of the HDAC9 in carotid atherosclerosis. We found that carotid VSMCs express HDAC9 and genes typically associated with immune characteristics. Using cellular assays, we have demonstrated that recruitment of macrophages can be modulated by HDAC9 expression. HDAC9 expression might affect carotid plaque stability and progression through its effects on the VSMC phenotype and recruitment of immune cells.

15.
Nat Genet ; 54(3): 240-250, 2022 03.
Article En | MEDLINE | ID: mdl-35177841

Cardiometabolic diseases are the leading cause of death worldwide. Despite a known genetic component, our understanding of these diseases remains incomplete. Here, we analyzed the contribution of rare variants to 57 diseases and 26 cardiometabolic traits, using data from 200,337 UK Biobank participants with whole-exome sequencing. We identified 57 gene-based associations, with broad replication of novel signals in Geisinger MyCode. There was a striking risk associated with mutations in known Mendelian disease genes, including MYBPC3, LDLR, GCK, PKD1 and TTN. Many genes showed independent convergence of rare and common variant evidence, including an association between GIGYF1 and type 2 diabetes. We identified several large effect associations for height and 18 unique genes associated with blood lipid or glucose levels. Finally, we found that between 1.0% and 2.4% of participants carried rare potentially pathogenic variants for cardiometabolic disorders. These findings may facilitate studies aimed at therapeutics and screening of these common disorders.


Cardiovascular Diseases , Diabetes Mellitus, Type 2 , Biological Specimen Banks , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Carrier Proteins/genetics , Diabetes Mellitus, Type 2/genetics , Genetic Predisposition to Disease , Genetic Variation/genetics , Humans , United Kingdom
16.
Nat Genet ; 54(1): 40-51, 2022 01.
Article En | MEDLINE | ID: mdl-34837083

Enlargement or aneurysm of the aorta predisposes to dissection, an important cause of sudden death. We trained a deep learning model to evaluate the dimensions of the ascending and descending thoracic aorta in 4.6 million cardiac magnetic resonance images from the UK Biobank. We then conducted genome-wide association studies in 39,688 individuals, identifying 82 loci associated with ascending and 47 with descending thoracic aortic diameter, of which 14 loci overlapped. Transcriptome-wide analyses, rare-variant burden tests and human aortic single nucleus RNA sequencing prioritized genes including SVIL, which was strongly associated with descending aortic diameter. A polygenic score for ascending aortic diameter was associated with thoracic aortic aneurysm in 385,621 UK Biobank participants (hazard ratio = 1.43 per s.d., confidence interval 1.32-1.54, P = 3.3 × 10-20). Our results illustrate the potential for rapidly defining quantitative traits with deep learning, an approach that can be broadly applied to biomedical images.


Aorta, Thoracic/anatomy & histology , Deep Learning , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging , Adult , Aged , Aorta, Thoracic/pathology , Aortic Aneurysm/genetics , Aortic Aneurysm/pathology , Biological Variation, Population , Female , Genome-Wide Association Study , Humans , Male , Middle Aged , Quantitative Trait Loci , Transcriptome
17.
Am J Hum Genet ; 109(1): 81-96, 2022 01 06.
Article En | MEDLINE | ID: mdl-34932938

Large-scale gene sequencing studies for complex traits have the potential to identify causal genes with therapeutic implications. We performed gene-based association testing of blood lipid levels with rare (minor allele frequency < 1%) predicted damaging coding variation by using sequence data from >170,000 individuals from multiple ancestries: 97,493 European, 30,025 South Asian, 16,507 African, 16,440 Hispanic/Latino, 10,420 East Asian, and 1,182 Samoan. We identified 35 genes associated with circulating lipid levels; some of these genes have not been previously associated with lipid levels when using rare coding variation from population-based samples. We prioritize 32 genes in array-based genome-wide association study (GWAS) loci based on aggregations of rare coding variants; three (EVI5, SH2B3, and PLIN1) had no prior association of rare coding variants with lipid levels. Most of our associated genes showed evidence of association among multiple ancestries. Finally, we observed an enrichment of gene-based associations for low-density lipoprotein cholesterol drug target genes and for genes closest to GWAS index single-nucleotide polymorphisms (SNPs). Our results demonstrate that gene-based associations can be beneficial for drug target development and provide evidence that the gene closest to the array-based GWAS index SNP is often the functional gene for blood lipid levels.


Exome , Genetic Variation , Genome-Wide Association Study , Lipids/blood , Open Reading Frames , Alleles , Blood Glucose/genetics , Case-Control Studies , Computational Biology/methods , Databases, Genetic , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/metabolism , Genetic Predisposition to Disease , Genetics, Population , Genome-Wide Association Study/methods , Humans , Lipid Metabolism/genetics , Liver/metabolism , Liver/pathology , Molecular Sequence Annotation , Multifactorial Inheritance , Phenotype , Polymorphism, Single Nucleotide
18.
Cardiovasc Res ; 118(13): 2833-2846, 2022 10 21.
Article En | MEDLINE | ID: mdl-34849650

AIMS: Genetic studies have implicated the ARHGEF26 locus in the risk of coronary artery disease (CAD). However, the causal pathways by which DNA variants at the ARHGEF26 locus confer risk for CAD are incompletely understood. We sought to elucidate the mechanism responsible for the enhanced risk of CAD associated with the ARHGEF26 locus. METHODS AND RESULTS: In a conditional analysis of the ARHGEF26 locus, we show that the sentinel CAD-risk signal is significantly associated with various non-lipid vascular phenotypes. In human endothelial cell (EC), ARHGEF26 promotes the angiogenic capacity, and interacts with known angiogenic factors and pathways. Quantitative mass spectrometry showed that one CAD-risk coding variant, rs12493885 (p.Val29Leu), resulted in a gain-of-function ARHGEF26 that enhances proangiogenic signalling and displays enhanced interactions with several proteins partially related to the angiogenic pathway. ARHGEF26 is required for endothelial angiogenesis by promoting macropinocytosis of Vascular Endothelial Growth Factor Receptor 2 (VEGFR2) on cell membrane and is crucial to Vascular Endothelial Growth Factor (VEGF)-dependent murine vessel sprouting ex vivo. In vivo, global or tissue-specific deletion of ARHGEF26 in EC, but not in vascular smooth muscle cells, significantly reduced atherosclerosis in mice, with enhanced plaque stability. CONCLUSIONS: Our results demonstrate that ARHGEF26 is involved in angiogenesis signaling, and that DNA variants within ARHGEF26 that are associated with CAD risk could affect angiogenic processes by potentiating VEGF-dependent angiogenesis.


Guanine Nucleotide Exchange Factors , Vascular Endothelial Growth Factor Receptor-2 , Animals , Humans , Mice , Neovascularization, Pathologic , Neovascularization, Physiologic/physiology , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Guanine Nucleotide Exchange Factors/genetics
19.
Nat Metab ; 3(11): 1476-1483, 2021 11.
Article En | MEDLINE | ID: mdl-34750571

Cardiometabolic diseases are frequently polygenic in architecture, comprising a large number of risk alleles with small effects spread across the genome1-3. Polygenic scores (PGS) aggregate these into a metric representing an individual's genetic predisposition to disease. PGS have shown promise for early risk prediction4-7 and there is an open question as to whether PGS can also be used to understand disease biology8. Here, we demonstrate that cardiometabolic disease PGS can be used to elucidate the proteins underlying disease pathogenesis. In 3,087 healthy individuals, we found that PGS for coronary artery disease, type 2 diabetes, chronic kidney disease and ischaemic stroke are associated with the levels of 49 plasma proteins. Associations were polygenic in architecture, largely independent of cis and trans protein quantitative trait loci and present for proteins without quantitative trait loci. Over a follow-up of 7.7 years, 28 of these proteins associated with future myocardial infarction or type 2 diabetes events, 16 of which were mediators between polygenic risk and incident disease. Twelve of these were druggable targets with therapeutic potential. Our results demonstrate the potential for PGS to uncover causal disease biology and targets with therapeutic potential, including those that may be missed by approaches utilizing information at a single locus.


Blood Proteins , Heart Diseases/etiology , Heart Diseases/metabolism , Metabolic Diseases/etiology , Metabolic Diseases/metabolism , Multifactorial Inheritance , Proteome , Adult , Biomarkers , Disease Management , Disease Susceptibility , England/epidemiology , Female , Genetic Predisposition to Disease , Heart Diseases/diagnosis , Heart Diseases/epidemiology , Humans , Male , Metabolic Diseases/diagnosis , Metabolic Diseases/epidemiology , Middle Aged , Public Health Surveillance , Young Adult
20.
Life Sci Alliance ; 4(12)2021 12.
Article En | MEDLINE | ID: mdl-34663679

Extracellular vesicles (EVs) mediate intercellular signaling by transferring their cargo to recipient cells, but the functional consequences of signaling are not fully appreciated. RBC-derived EVs are abundant in circulation and have been implicated in regulating immune responses. Here, we use a transgenic mouse model for fluorescence-based mapping of RBC-EV recipient cells to assess the role of this intercellular signaling mechanism in heart disease. Using fluorescent-based mapping, we detected an increase in RBC-EV-targeted cardiomyocytes in a murine model of ischemic heart failure. Single cell nuclear RNA sequencing of the heart revealed a complex landscape of cardiac cells targeted by RBC-EVs, with enrichment of genes implicated in cell proliferation and stress signaling pathways compared with non-targeted cells. Correspondingly, cardiomyocytes targeted by RBC-EVs more frequently express cellular markers of DNA synthesis, suggesting the functional significance of EV-mediated signaling. In conclusion, our mouse model for mapping of EV-recipient cells reveals a complex cellular network of RBC-EV-mediated intercellular communication in ischemic heart failure and suggests a functional role for this mode of intercellular signaling.


Erythrocytes/metabolism , Extracellular Vesicles/metabolism , Heart Failure/blood , Myocardial Infarction/blood , Myocardium/metabolism , RNA, Nuclear/genetics , RNA-Seq/methods , Signal Transduction/genetics , Single-Cell Analysis/methods , Animals , Cell Communication/genetics , Cell Proliferation/genetics , Cells, Cultured , Disease Models, Animal , Female , Healthy Volunteers , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Myocytes, Cardiac/metabolism
...