Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 3856, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34158470

RESUMEN

The MRN complex (MRX in Saccharomyces cerevisiae, made of Mre11, Rad50 and Nbs1/Xrs2) initiates double-stranded DNA break repair and activates the Tel1/ATM kinase in the DNA damage response. Telomeres counter both outcomes at chromosome ends, partly by keeping MRN-ATM in check. We show that MRX is disabled by telomeric protein Rif2 through an N-terminal motif (MIN, MRN/X-inhibitory motif). MIN executes suppression of Tel1, DNA end-resection and non-homologous end joining by binding the Rad50 N-terminal region. Our data suggest that MIN promotes a transition within MRX that is not conductive for endonuclease activity, DNA-end tethering or Tel1 kinase activation, highlighting an Achilles' heel in MRN, which we propose is also exploited by the RIF2 paralog ORC4 (Origin Recognition Complex 4) in Kluyveromyces lactis and the Schizosaccharomyces pombe telomeric factor Taz1, which is evolutionarily unrelated to Orc4/Rif2. This raises the possibility that analogous mechanisms might be deployed in other eukaryotes as well.


Asunto(s)
Secuencias de Aminoácidos , ADN Helicasas/metabolismo , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Telómero/metabolismo , Secuencia de Aminoácidos , Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , ADN Helicasas/genética , ADN de Hongos/genética , ADN de Hongos/metabolismo , Endodesoxirribonucleasas/genética , Exodesoxirribonucleasas/genética , Inestabilidad Genómica , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Telómero/genética , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismo
3.
PLoS One ; 8(12): e83800, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24376751

RESUMEN

The ability to study protein function in vivo often relies on systems that regulate the presence and absence of the protein of interest. Two limitations for previously described transcriptional control systems that are used to regulate protein expression in fission yeast are: the time taken for inducing conditions to initiate transcription and the ability to achieve very low basal transcription in the "OFF-state". In previous work, we described a Cre recombination-mediated system that allows the rapid and efficient regulation of any gene of interest by the urg1 promoter, which has a dynamic range of approximately 75-fold and which is induced within 30-60 minutes of uracil addition. In this report we describe easy-to-use and versatile modules that can be exploited to significantly tune down Purg1 "OFF-levels" while maintaining an equivalent dynamic range. We also provide plasmids and tools for combining Purg1 transcriptional control with the auxin degron tag to help maintain a null-like phenotype. We demonstrate the utility of this system by improved regulation of HO-dependent site-specific DSB formation, by the regulation Rtf1-dependent replication fork arrest and by controlling Rhp18(Rad18)-dependent post replication repair.


Asunto(s)
Ingeniería Genética/métodos , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Arginina/farmacología , Endonucleasas/metabolismo , Expresión Génica/efectos de los fármacos , Sitios Genéticos/genética , Hidroxiurea/farmacología , Ácidos Indolacéticos/farmacología , Fenotipo , Plásmidos/genética , Regiones Promotoras Genéticas/genética , Estabilidad del ARN , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Schizosaccharomyces/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Factores de Escisión y Poliadenilación de ARNm/genética
4.
Mol Cell Biol ; 33(8): 1476-86, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23382076

RESUMEN

In Saccharomyces cerevisiae, G1/S transcription factors MBF and SBF regulate a large family of genes important for entry to the cell cycle and DNA replication and repair. Their regulation is crucial for cell viability, and it is conserved throughout evolution. MBF and SBF consist of a common component, Swi6, and a DNA-specific binding protein, Mbp1 and Swi4, respectively. Transcriptional repressors bind to and regulate the activity of both transcription factors. Whi5 binds to SBF and represses its activity at the beginning of the G1 phase to prevent early activation. Nrm1 binds to MBF to repress transcription as cells progress through S phase. Here, we describe a protein motif, the GTB motif (for G1/S transcription factor binding), in Nrm1 and Whi5 that is required to bind to the transcription factors. We also identify a region of the carboxy terminus of Swi6 that is required for Nrm1 and Whi5 binding to their target transcription factors and show that mutation of this region overrides the repression of MBF- and SBF-regulated genes by Nrm1 and Whi5. Finally, we show that the GTB motif is the core of a functional module that is necessary and sufficient for targeting of the transcription factors by their cognate repressors.


Asunto(s)
Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , Proteínas de Unión al ADN/metabolismo , Fase G1 , Regulación Fúngica de la Expresión Génica , Hidroxiurea/farmacología , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Terciaria de Proteína , Proteínas Represoras/química , Proteínas Represoras/genética , Fase S , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Schizosaccharomyces/citología , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Alineación de Secuencia , Factores de Transcripción/química
5.
PLoS Genet ; 8(6): e1002801, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22761595

RESUMEN

DNA damage checkpoint activation can be subdivided in two steps: initial activation and signal amplification. The events distinguishing these two phases and their genetic determinants remain obscure. TopBP1, a mediator protein containing multiple BRCT domains, binds to and activates the ATR/ATRIP complex through its ATR-Activation Domain (AAD). We show that Schizosaccharomyces pombe Rad4(TopBP1) AAD-defective strains are DNA damage sensitive during G1/S-phase, but not during G2. Using lacO-LacI tethering, we developed a DNA damage-independent assay for checkpoint activation that is Rad4(TopBP1) AAD-dependent. In this assay, checkpoint activation requires histone H2A phosphorylation, the interaction between TopBP1 and the 9-1-1 complex, and is mediated by the phospho-binding activity of Crb2(53BP1). Consistent with a model where Rad4(TopBP1) AAD-dependent checkpoint activation is ssDNA/RPA-independent and functions to amplify otherwise weak checkpoint signals, we demonstrate that the Rad4(TopBP1) AAD is important for Chk1 phosphorylation when resection is limited in G2 by ablation of the resecting nuclease, Exo1. We also show that the Rad4(TopBP1) AAD acts additively with a Rad9 AAD in G1/S phase but not G2. We propose that AAD-dependent Rad3(ATR) checkpoint amplification is particularly important when DNA resection is limiting. In S. pombe, this manifests in G1/S phase and relies on protein-chromatin interactions.


Asunto(s)
Cromatina/genética , Proteínas de Unión al ADN , Puntos de Control de la Fase G1 del Ciclo Celular/genética , Estructura Terciaria de Proteína , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/genética , Transglutaminasas , Proteínas Portadoras/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1) , Quinasa de Punto de Control 2 , Daño del ADN/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Fúngica de la Expresión Génica , Histonas/genética , Proteínas Nucleares/metabolismo , Fosforilación , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína/genética , Fase S/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Transducción de Señal , Transglutaminasas/genética , Transglutaminasas/metabolismo
6.
Genes Dev ; 24(11): 1145-59, 2010 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-20516199

RESUMEN

The correct levels of deoxyribonucleotide triphosphates and their relative abundance are important to maintain genomic integrity. Ribonucleotide reductase (RNR) regulation is complex and multifaceted. RNR is regulated allosterically by two nucleotide-binding sites, by transcriptional control, and by small inhibitory proteins that associate with the R1 catalytic subunit. In addition, the subcellular localization of the R2 subunit is regulated through the cell cycle and in response to DNA damage. We show that the fission yeast small RNR inhibitor Spd1 is intrinsically disordered and regulates R2 nuclear import, as predicted by its relationship to Saccharomyces cerevisiae Dif1. We demonstrate that Spd1 can interact with both R1 and R2, and show that the major restraint of RNR in vivo by Spd1 is unrelated to R2 subcellular localization. Finally, we identify a new behavior for RNR complexes that potentially provides yet another mechanism to regulate dNTP synthesis via modulation of RNR complex architecture.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Ribonucleótido Reductasas/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Transporte Activo de Núcleo Celular/fisiología , Alanina/metabolismo , Proteínas de Ciclo Celular/genética , Mutagénesis , Subunidades de Proteína/metabolismo , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
7.
Cell ; 138(1): 78-89, 2009 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-19596236

RESUMEN

Structure-specific endonucleases resolve DNA secondary structures generated during DNA repair and recombination. The yeast 5' flap endonuclease Slx1-Slx4 has received particular attention with the finding that Slx4 has Slx1-independent key functions in genome maintenance. Although Slx1 is a highly conserved protein in eukaryotes, no orthologs of Slx4 were reported other than in fungi. Here we report the identification of Slx4 orthologs in metazoa, including fly MUS312, essential for meiotic recombination, and human BTBD12, an ATM/ATR checkpoint kinase substrate. Human SLX1-SLX4 displays robust Holliday junction resolvase activity in addition to 5' flap endonuclease activity. Depletion of SLX1 and SLX4 results in 53BP1 foci accumulation and H2AX phosphorylation as well as cellular hypersensitivity to MMS. Furthermore, we show that SLX4 binds the XPF(ERCC4) and MUS81 subunits of the XPF-ERCC1 and MUS81-EME1 endonucleases and is required for DNA interstrand crosslink repair. We propose that SLX4 acts as a docking platform for multiple structure-specific endonucleases.


Asunto(s)
Reparación del ADN , Recombinasas/metabolismo , Secuencia de Aminoácidos , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas , Endonucleasas/metabolismo , Inestabilidad Genómica , Humanos , Datos de Secuencia Molecular , Recombinasas/química , Recombinasas/genética , Recombinación Genética , Alineación de Secuencia
8.
Mol Biol Cell ; 20(1): 245-55, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18923139

RESUMEN

The completion of chromosome segregation during anaphase requires the hypercondensation of the approximately 1-Mb rDNA array, a reaction dependent on condensin and Cdc14 phosphatase. Using systematic genetic screens, we identified 29 novel genetic interactions with budding yeast condensin. Of these, FOB1, CSM1, LRS4, and TOF2 were required for the mitotic condensation of the tandem rDNA array localized on chromosome XII. Interestingly, whereas Fob1 and the monopolin subunits Csm1 and Lrs4 function in rDNA condensation throughout M phase, Tof2 was only required during anaphase. We show that Tof2, which shares homology with the Cdc14 inhibitor Net1/Cfi1, interacts with Cdc14 phosphatase and its deletion suppresses defects in mitotic exit network (MEN) components. Consistent with these genetic data, the onset of Cdc14 release from the nucleolus was similar in TOF2 and tof2Delta cells; however, the magnitude of the release was dramatically increased in the absence of Tof2, even when the MEN pathway was compromised. These data support a model whereby Tof2 coordinates the biphasic release of Cdc14 during anaphase by restraining a population of Cdc14 in the nucleolus after activation of the Cdc14 early anaphase release (FEAR) network, for subsequent release by the MEN.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Mitosis/fisiología , Proteínas Tirosina Fosfatasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Animales , Proteínas de Ciclo Celular/genética , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Redes Reguladoras de Genes , Péptidos y Proteínas de Señalización Intracelular , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mapeo de Interacción de Proteínas , Proteínas Tirosina Fosfatasas/genética , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/genética
9.
Proc Natl Acad Sci U S A ; 105(43): 16653-8, 2008 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-18931302

RESUMEN

Synthetic lethal genetic interaction networks define genes that work together to control essential functions and have been studied extensively in Saccharomyces cerevisiae using the synthetic genetic array (SGA) analysis technique (ScSGA). The extent to which synthetic lethal or other genetic interaction networks are conserved between species remains uncertain. To address this question, we compared literature-curated and experimentally derived genetic interaction networks for two distantly related yeasts, Schizosaccharomyces pombe and S. cerevisiae. We find that 23% of interactions in a novel, high-quality S. pombe literature-curated network are conserved in the existing S. cerevisiae network. Next, we developed a method, called S. pombe SGA analysis (SpSGA), enabling rapid, high-throughput isolation of genetic interactions in this species. Direct comparison by SpSGA and ScSGA of approximately 220 genes involved in DNA replication, the DNA damage response, chromatin remodeling, intracellular transport, and other processes revealed that approximately 29% of genetic interactions are common to both species, with the remainder exhibiting unique, species-specific patterns of genetic connectivity. We define a conserved yeast network (CYN) composed of 106 genes and 144 interactions and suggest that this network may help understand the shared biology of diverse eukaryotic species.


Asunto(s)
Redes Reguladoras de Genes , Genes Fúngicos , Filogenia , Genes Letales , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética
10.
Mol Cell ; 28(1): 134-46, 2007 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-17936710

RESUMEN

The Mre11-Rad50-Nbs1 (MRN) complex is a primary sensor of DNA double-strand breaks (DSBs). Upon recruitment to DSBs, it plays a critical role in catalyzing 5' --> 3' single-strand resection that is required for repair by homologous recombination (HR). Unknown mechanisms repress HR in G1 phase of the cell cycle during which nonhomologous end-joining (NHEJ) is the favored mode of DSB repair. Here we describe fission yeast Ctp1, so-named because it shares conserved domains with the mammalian tumor suppressor CtIP. Ctp1 is recruited to DSBs where it is essential for repair by HR. Ctp1 is required for efficient formation of RPA-coated single-strand DNA adjacent to DSBs, indicating that it functions with the MRN complex in 5' --> 3' resection. Transcription of ctp1(+) is periodic during the cell cycle, with the onset of its expression coinciding with the start of DNA replication. These data suggest that regulation of Ctp1 underlies cell-cycle control of HR.


Asunto(s)
Ciclo Celular/fisiología , Roturas del ADN de Doble Cadena , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Recombinación Genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiología , Secuencia de Aminoácidos , Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/genética , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Humanos , Datos de Secuencia Molecular , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/citología , Proteínas de Schizosaccharomyces pombe/genética , Alineación de Secuencia , Telómero/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Técnicas del Sistema de Dos Híbridos
11.
Genetics ; 175(2): 963-7, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17151234

RESUMEN

The accurate repair of DNA double-strand breaks is essential for cell survival and maintenance of genome integrity. Here we describe xlf1+, a gene in the fission yeast Schizosaccharomyces pombe that is required for repair of double-strand breaks by nonhomologous end joining during G1 phase of the cell cycle. Xlf1 is the ortholog of budding yeast Nej1 and human XLF/Cernunnos proteins.


Asunto(s)
Reparación del ADN/genética , Recombinación Genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Secuencia de Aminoácidos , Fase G1 , Datos de Secuencia Molecular , Proteínas de Schizosaccharomyces pombe/química , Homología de Secuencia
12.
Mol Cell ; 23(4): 483-96, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16916637

RESUMEN

G1-specific transcription in yeast depends upon SBF and MBF. We have identified Nrm1 (negative regulator of MBF targets 1), as a stable component of MBF. NRM1 (YNR009w), an MBF-regulated gene expressed during late G1 phase, associates with G1-specific promoters via MBF. Transcriptional repression upon exit from G1 phase requires both Nrm1 and MBF. Inactivation of Nrm1 results in prolonged expression of MBF-regulated transcripts and leads to hydroxyurea (HU) resistance and enhanced bypass of rad53Delta- and mec1Delta-associated lethality. Constitutive expression of a stabilized form of Nrm1 represses MBF targets and leads to HU sensitivity. The fission yeast homolog SpNrm1, encoded by the MBF target gene nrm1(+) (SPBC16A3.07c), binds to MBF target genes and acts as a corepressor. In both yeasts, MBF represses G1-specific transcription outside of G1 phase. A negative feedback loop involving Nrm1 bound to MBF leads to transcriptional repression as cells exit G1 phase.


Asunto(s)
Retroalimentación Fisiológica , Fase G1 , Proteínas Represoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Transactivadores/metabolismo , Transcripción Genética , Secuencia de Aminoácidos , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Regulación Fúngica de la Expresión Génica , Genes Fúngicos/genética , Hidroxiurea/farmacología , Péptidos y Proteínas de Señalización Intracelular , Modelos Genéticos , Datos de Secuencia Molecular , Mutación/genética , Regiones Promotoras Genéticas/genética , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Represoras/química , Saccharomyces cerevisiae/efectos de los fármacos , Proteínas de Saccharomyces cerevisiae/química , Schizosaccharomyces/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética/efectos de los fármacos
13.
EMBO J ; 25(11): 2564-74, 2006 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-16710300

RESUMEN

Rad52-dependent homologous recombination (HR) is regulated by the antirecombinase activities of Srs2 and Rqh1/Sgs1 DNA helicases in fission yeast and budding yeast. Functional analysis of Srs2 in Schizosaccharomyces pombe led us to the discovery of Sws1, a novel HR protein with a SWIM-type Zn finger. Inactivation of Sws1 suppresses the genotoxic sensitivity of srs2Delta and rqh1Delta mutants and rescues the inviability of srs2Delta rqh1Delta cells. Sws1 functions at an early step of recombination in a pro-recombinogenic complex with Rlp1 and Rdl1, two RecA-like proteins that are most closely related to the human Rad51 paralogs XRCC2 and RAD51D, respectively. This finding indicates that the XRCC2-RAD51D complex is conserved in lower eukaryotes. A SWS1 homolog exists in human cells. It associates with RAD51D and ablating its expression reduces the number of RAD51 foci. These studies unveil a conserved pathway for the initiation and control of HR in eukaryotic cells.


Asunto(s)
ADN Helicasas/metabolismo , Recombinación Genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Secuencia de Aminoácidos , Animales , ADN Helicasas/genética , Epistasis Genética , Humanos , Datos de Secuencia Molecular , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Técnicas del Sistema de Dos Híbridos , Dedos de Zinc
14.
Mol Cell Biol ; 25(13): 5363-79, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15964794

RESUMEN

ATM has a central role in controlling the cellular responses to DNA damage. It and other phosphoinositide 3-kinase-related kinases (PIKKs) have giant helical HEAT repeat domains in their amino-terminal regions. The functions of these domains in PIKKs are not well understood. ATM activation in response to DNA damage appears to be regulated by the Mre11-Rad50-Nbs1 (MRN) complex, although the exact functional relationship between the MRN complex and ATM is uncertain. Here we show that two pairs of HEAT repeats in fission yeast ATM (Tel1) interact with an FXF/Y motif at the C terminus of Nbs1. This interaction resembles nucleoporin FXFG motif binding to HEAT repeats in importin-beta. Budding yeast Nbs1 (Xrs2) appears to have two FXF/Y motifs that interact with Tel1 (ATM). In Xenopus egg extracts, the C terminus of Nbs1 recruits ATM to damaged DNA, where it is subsequently autophosphorylated. This interaction is essential for ATM activation. A C-terminal 147-amino-acid fragment of Nbs1 that has the Mre11- and ATM-binding domains can restore ATM activation in an Nbs1-depleted extract. We conclude that an interaction between specific HEAT repeats in ATM and the C-terminal FXF/Y domain of Nbs1 is essential for ATM activation. We propose that conformational changes in the MRN complex that occur upon binding to damaged DNA are transmitted through the FXF/Y-HEAT interface to activate ATM. This interaction also retains active ATM at sites of DNA damage.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Daño del ADN/efectos de la radiación , Proteínas de Unión al ADN/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Ciclo Celular/química , Extractos Celulares , Proteínas Cromosómicas no Histona/genética , Secuencia Conservada , Proteínas de Unión al ADN/química , Femenino , Humanos , Modelos Biológicos , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Oocitos , Fosforilación , Conformación Proteica , Proteínas Serina-Treonina Quinasas/química , Estructura Terciaria de Proteína , Proteínas de Schizosaccharomyces pombe/genética , Proteínas Supresoras de Tumor/química , Técnicas del Sistema de Dos Híbridos , Xenopus , Proteínas de Xenopus
15.
DNA Repair (Amst) ; 3(8-9): 863-73, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15279771

RESUMEN

The discovery of the recA gene toward the middle of the 20th century sparked work in perhaps one of the most biochemically and biophysically intriguing systems of DNA repair-homologous recombination. The inner workings of this system, in particular those of the more complex eukaryotes, have been and in many ways remain mysterious. Yet at the turn of this century, a wealth of structural and genetic results has unveiled a detailed picture of the roles, relationships, and mechanics of interacting homologous recombination proteins. Here we focus on the predominant questions addressed by these exciting 21st century structural results-from detection of broken DNA ends to coordination of pathway progression. The emerging structural view of double-strand break repair, therefore, reveals the molecular basis both for functions specific to DNA recombination and for general features characterizing DNA repair processes.


Asunto(s)
Daño del ADN , Reparación del ADN , Ácido Anhídrido Hidrolasas , Adenosina Trifosfatasas/química , Animales , Proteína BRCA2/fisiología , Cristalografía por Rayos X , ADN/química , ADN/genética , Enzimas Reparadoras del ADN/química , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Dimerización , Humanos , Microscopía Electrónica , Modelos Moleculares , Conformación Proteica , Recombinasa Rad51 , Recombinación Genética , Relación Estructura-Actividad
16.
Mol Biol Cell ; 15(1): 71-80, 2004 01.
Artículo en Inglés | MEDLINE | ID: mdl-14528010

RESUMEN

In most eukaryotes, genes encoding ribosomal RNAs (rDNA) are clustered in long tandem head-to-tail repeats. Studies of Saccharomyces cerevisiae have indicated that rDNA copy number is maintained through recombination events associated with site-specific blockage of replication forks (RFs). Here, we describe two Schizosaccharomyces pombe proteins, homologs of S. cerevisiae Slx1 and Slx4, as subunits of a novel type of endonuclease that maintains rDNA copy number. The Slx1-Slx4-dependent endonuclease introduces single-strand cuts in duplex DNA on the 3' side of junctions with single-strand DNA. Deletion of Slx1 or Rqh1 RecQ-like DNA helicase provokes rDNA contraction, whereas simultaneous elimination of Slx1-Slx4 endonuclease and Rqh1 is lethal. Slx1 associates with chromatin at two foci characteristic of the two rDNA repeat loci in S. pombe. We propose a model in which the Slx1-Slx4 complex is involved in the control of the expansion and contraction of the rDNA loci by initiating recombination events at stalled RFs.


Asunto(s)
Cromatina/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , ADN Ribosómico , Endonucleasas/metabolismo , Microscopía Fluorescente , Modelos Moleculares , Datos de Secuencia Molecular , Subunidades de Proteína/metabolismo , Recombinación Genética , Schizosaccharomyces/genética , Alineación de Secuencia
17.
EMBO J ; 22(22): 6137-47, 2003 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-14609959

RESUMEN

Yeast and human Eme1 protein, in complex with Mus81, constitute an endonuclease that cleaves branched DNA structures, especially those arising during stalled DNA replication. We identified mouse Eme1, and show that it interacts with Mus81 to form a complex that preferentially cleaves 3'-flap structures and replication forks rather than Holliday junctions in vitro. We demonstrate that Eme1-/- embryonic stem (ES) cells are hypersensitive to the DNA cross-linking agents mitomycin C and cisplatin, but only mildly sensitive to ionizing radiation, UV radiation and hydroxyurea treatment. Mammalian Eme1 is not required for the resolution of DNA intermediates that arise during homologous recombination processes such as gene targeting, gene conversion and sister chromatid exchange (SCE). Unlike Blm-deficient ES cells, increased SCE was seen only following induced DNA damage in Eme1-deficient cells. Most importantly, Eme1 deficiency led to spontaneous genomic instability. These results reveal that mammalian Eme1 plays a key role in DNA repair and the maintenance of genome integrity.


Asunto(s)
Reparación del ADN/fisiología , Endodesoxirribonucleasas/metabolismo , Inestabilidad Genómica , Secuencia de Aminoácidos , Animales , Inestabilidad Cromosómica , Daño del ADN , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endonucleasas/genética , Endonucleasas/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe/genética , Intercambio de Cromátides Hermanas , Células Madre
18.
Mol Cell Biol ; 23(18): 6564-73, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12944482

RESUMEN

Mre11, Rad50, and Nbs1 form a conserved heterotrimeric complex that is involved in recombination and DNA damage checkpoints. Mutations in this complex disrupt the S-phase DNA damage checkpoint, the checkpoint which slows replication in response to DNA damage, and cause chromosome instability and cancer in humans. However, how these proteins function and specifically where they act in the checkpoint signaling pathway remain crucial questions. We identified fission yeast Nbs1 by using a comparative genomic approach and showed that the genes for human Nbs1 and fission yeast Nbs1 and that for their budding yeast counterpart, Xrs2, are members of an evolutionarily related but rapidly diverging gene family. Fission yeast Nbs1, Rad32 (the homolog of Mre11), and Rad50 are involved in DNA damage repair, telomere regulation, and the S-phase DNA damage checkpoint. However, they are not required for G(2) DNA damage checkpoint. Our results suggest that a complex of Rad32, Rad50, and Nbs1 acts specifically in the S-phase branch of the DNA damage checkpoint and is not involved in general DNA damage recognition or signaling.


Asunto(s)
Proteínas Cromosómicas no Histona/genética , Proteínas Cromosómicas no Histona/metabolismo , Daño del ADN/fisiología , Fase S/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas de Ciclo Celular/genética , Clonación Molecular , Secuencia Conservada , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Evolución Molecular , Exodesoxirribonucleasas/genética , Exodesoxirribonucleasas/metabolismo , Fase G2/genética , Regulación Fúngica de la Expresión Génica , Sustancias Macromoleculares , Metilmetanosulfonato/farmacología , Datos de Secuencia Molecular , Proteínas Nucleares/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/citología , Schizosaccharomyces/efectos de los fármacos , Homología de Secuencia de Aminoácido , Telómero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA