Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(9)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37176882

RESUMEN

Nanomaterials are increasingly being used for crop growth, especially as a new paradigm for plant disease management. Among the other nanomaterials, silver nanoparticles (AgNPs) draw a great deal of attention because of their unique features and multiple usages. Rapid expansion in nanotechnology and utilization of AgNPs in a large range of areas resulted in the substantial release of these nanoparticles into the soil and water environment, causing concern for the safety of ecosystems and phytosanitary. In an attempt to find an effective control measure for sweet potato soft rot disease, the pathogen Dickeya dadantii was exposed to AgNPs, the cell-free culture supernatant (CFCS) of Bacillus amyloliquefaciens alone, and both in combination. AgNPs were synthesized using CFCS of Bacillus amyloliquefaciens strain A3. The green synthesized AgNPs exhibited a characteristic surface plasmon resonance peak at 410-420 nm. Electron microscopy and X-ray diffraction spectroscopy determined the nanocrystalline nature and 20-100 nm diameters of AgNPs. Release of metal Ag+ ion from biosynthesized AgNPs increases with time. AgNPs and CFCS of B. amyloliquefaciens alone exhibited antibacterial activity against the growth, biofilm formation, swimming motility, and virulence of strain A3. The antibacterial activities elevated with the elevation in AgNPs and CFCS concentration. Similar antibacterial activities against D. dadantii were obtained with AgNPs at 50 µg·mL-1, 50% CFCS alone, and the combination of AgNPs at 12 µg·mL-1 and 12% CFCS of B. amyloliquefaciens. In planta experiments indicated that all the treatments reduced D. dadantii infection and increased plant growth. These findings suggest that AgNPs along with CFCS of B. amyloliquefaciens can be applied to minimize this bacterial disease by controlling pathogen-contaminated sweet potato tuber with minimum Ag nano-pollutant in the environment.

2.
J Fungi (Basel) ; 9(4)2023 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-37108949

RESUMEN

Anthracnose is one of the most widespread and destructive diseases in grapes. Grape anthracnose can be caused by various Colletotrichum species, such as Colletotrichum gloeosporioides and Colletotrichum cuspidosporium. In recent years, Colletotrichum aenigma was reported as a causal agent of Grape anthracnose in China and South Korea. Peroxisome is an important organelle in eukaryotes, which plays a very important role in the growth, development, and pathogenicity of several plant-pathogenic fungal species i, but it has not been reported in C. aenigma. In this work, the peroxisome of C. aenigma was labeled with a fluorescent protein, using green fluorescent protein (GFP) and red fluorescent protein (DsRED and mCherry) as reporter genes. Via Agrobacterium tumefaciens-mediated transformation (AtMT), two fluorescent fusion vectors to mark the peroxisomes, with GFP and DsRED, respectively, were introduced into a wild-type strain of C. aenigma. In the transformants, bright dots of green or red fluorescence in hyphae and spores could be seen in the strains labeled peroxisome. The nuclei labeled by the same method showed bright round fluorescent spots. In addition, we also combined fluorescent protein labeling with chemical staining to show the localization more clearly. The ideal peroxisome and nuclear fluorescence-labeled C. aenigma strain was obtained, which provided a reference for the study of its growth, development, and pathogenicity.

4.
Int J Mol Sci ; 23(16)2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36012276

RESUMEN

The DExD/H-box protein family encompasses a large number of RNA helicases that are involved in RNA metabolism and a variety of physiological functions in different species. However, there is limited knowledge of whether DExD/H-box proteins play a role in the pathogenicity of plant fungal pathogens. In the present work, the DExD/H-box protein MoDHX35, which belongs to the DEAH subfamily, was shown to be crucial in appressoria formation and full virulence of the rice blast fungus, Magnaporthe oryzae. The predicted protein sequence of MoDHX35 had typical DEAH-box domains, showed 47% identity to DHX35 in Homo species, but had no orthologs in Saccharomyces cerevisiae. Deletion of the MoDHX35 gene resulted in reduced tolerance of the mutants to doxorubicin, a nucleic acid synthesis disturbing agent, suggesting the involvement of MoDHX35 in RNA metabolism. MoDHX35-deleted mutants exhibited normal vegetative growth, conidia generation and conidial germination, but showed a reduced appressorium formation rate and attenuated virulence. Our work demonstrates the involvement of DEAH-box protein functions in the pathogenicity of plant fungal pathogens.


Asunto(s)
Magnaporthe , Oryza , Ascomicetos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Oryza/genética , Enfermedades de las Plantas/microbiología , ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Esporas Fúngicas , Virulencia/genética
5.
J Fungi (Basel) ; 8(8)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35893147

RESUMEN

Purines are basic components of nucleotides in living organisms. In this study, we identified the ortholog of adenylosuccinate synthase MoADE12 in Magnaporthe oryzae by screening for growth-defective T-DNA insertional mutants. Gene replacement was performed to investigate the biological role of MoADE12. Δmoade12 mutants were adenine auxotrophs that failed to produce conidia, and showed reduced perithecia formation and pathogenicity. Moreover, the Δmoade12 mutant was hypersensitive to Congo red and oxidants, indicating that MoADE12 was required for cell wall integrity and oxidative stress resistance. Transcriptomic analysis identified the underlying mechanisms and indicated that several pathogenicity-related genes were regulated in the Δmoade12 mutant. Therefore, our data suggest that the adenylosuccinate synthase MoADE12 is involved in the de novo AMP biosynthesis pathway and is important for conidiation and pathogenicity in the rice blast fungus.

6.
FEMS Microbiol Lett ; 369(1)2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35259230

RESUMEN

Nitric oxide (NO) homeostasis plays a versatile role in pathogen-host interactions. To maintain NO homeostasis in favor of pathogens, microbes have evolved NO degradation systems besides NO synthesis pathway, in which the flavohemoglobin and S-nitrosoglutathione (GSNO) reductase are two key enzymes. We previously proved that MoSFA1, a GSNO reductase, is required for the growth and pathogenicity in Magnaporthe oryzae. In the present work, MoFHB1, a flavohemoglobin-encoding gene in M. oryzae was functionally characterized. Although the expression of the MoFHB1 gene was developmentally regulated during conidial germination and appressorium development, disruption of MoFHB1 did not change vegetative growth, conidiation and virulence. However, compared with the Δmosfa1 mutant, the Δmofhb1 mutant was significantly more sensitive to NO stress, and the expression of MoSFA1 gene in the Δmofhb1 mutant was significantly upregulated. Double deletion of MoSFA1 and MoFHB1 led to greater sensitivity of the fungus to NO stress than either of the single gene mutant, but no further reduction in pathogenicity was found compared with that of Δmosfa1 mutant. Taken together, MoFHB1 played an important role in NO detoxification but was dispensable for virulence of M. oryzae.


Asunto(s)
Magnaporthe , Oryza , Ascomicetos , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulación Fúngica de la Expresión Génica , Estrés Nitrosativo , Oryza/microbiología , Oxidorreductasas/genética , Enfermedades de las Plantas/microbiología , Esporas Fúngicas
7.
J Fungi (Basel) ; 7(10)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34682279

RESUMEN

Magnaporthe oryzae, a fungal pathogen that causes rice blast, which is the most destructive disease of rice worldwide, has the potential to perform both asexual and sexual reproduction. MAT loci, consisting of MAT genes, were deemed to determine the mating types of M. oryzae strains. However, investigation was rarely performed on the development and molecular mechanisms of the sexual reproduction of the fungus. In the present work, we analyzed the roles of two MAT loci and five individual MAT genes in the sex determination, sexual development and pathogenicity of M. oryzae. Both of the MAT1-1 and MAT1-2 loci are required for sex determination and the development of sexual structures. MAT1-1-1, MAT1-1-3 and MAT1-2-1 genes are crucial for the formation of perithecium. MAT1-1-2 impacts the generation of asci and ascospores, while MAT1-2-2 is dispensable for sexual development. A GFP fusion experiment indicated that the protein of MAT1-1-3 is distributed in the nucleus. However, all of the MAT loci or MAT genes are dispensable for vegetative growth, asexual reproduction, pathogenicity and pathogenicity-related developments of the fungus, suggesting that sexual reproduction is regulated relatively independently in the development of the fungus. The data and methods of this work may be helpful to further understand the life cycle and the variation of the fungus.

8.
J Agric Food Chem ; 67(42): 11577-11583, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31557026

RESUMEN

Nanotechnology has provided a novel approach for the preparation of a safe and highly effective pesticide formulation. Thiazole-Zn, a widely used bactericide, was successfully prepared at nanoscale by an innovative approach of final synthesis process control. Its plausible formation mechanism based on restricted particle aggregation in a nanoreactor was elucidated. Then in order to assess the application performance of thiazole-Zn nanoparticle, the nanoformulation (NPF) was conveniently formulated. Interestingly, the physicochemical properties of NPF showed better than that of the commercial pesticide formulation (CPF) in dispersibility, wettability, spreadability, and stability. At the same time, the in vitro bioassay showed that the minimum inhibitory concentrations (MICs) of NPF against Xanthomonas oryzae pv Oryzae (XOO), Xanthomonas oryzae pv Oryzicola (XOC), Erwinia carotovora subsp. Carotovora (Jones) Holland (ECC), and Erwinia chrysanthemi pv Zeae (ECZ) were 46.88, 93.75, 93.75, and 375.00 mg/L, respectively, whereas those of CPF were 93.75, 375.00, 375.00, and 875.00 mg/L, respectively. Therefore, NPF exhibited stronger antibacterial activity against the above-mentioned pathogens. Moreover, NPF was more effective to bacterial blight of rice than CPF in field trial. As a conclusion, nanotechnology for pesticides by synthesis process control will have a potential in improving the utilization efficiency and relieving the corresponding environmental pollution.


Asunto(s)
Antibacterianos/química , Antibacterianos/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/farmacología , Nanopartículas/química , Nanotecnología/métodos , Tiadiazoles/química , Tiadiazoles/farmacología , Erwinia/efectos de los fármacos , Oryza/microbiología , Enfermedades de las Plantas/microbiología , Xanthomonas/efectos de los fármacos
9.
Sci Rep ; 9(1): 3490, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30837482

RESUMEN

Pyricularia oryzae is the pathogen for rice blast disease, which is a devastating threat to rice production worldwide. Lysine succinylation, a newly identified post-translational modification, is associated with various cellular processes. Here, liquid chromatography tandem-mass spectrometry combined with a high-efficiency succinyl-lysine antibody was used to identify the succinylated peptides in P. oryzae. In total, 2109 lysine succinylation sites in 714 proteins were identified. Ten conserved succinylation sequence patterns were identified, among which, K*******Ksuc, and K**Ksuc, were two most preferred ones. The frequency of lysine succinylation sites, however, greatly varied among organisms, including plants, animals, and microbes. Interestingly, the numbers of succinylation site in each protein of P. oryzae were significantly greater than that of most previous published organisms. Gene ontology and KEGG analysis showed that these succinylated peptides are associated with a wide range of cellular functions, from metabolic processes to stimuli responses. Further analyses determined that lysine succinylation occurs on several key enzymes of the tricarboxylic acid cycle and glycolysis pathway, indicating that succinylation may play important roles in the regulation of basal metabolism in P. oryzae. Furthermore, more than 40 pathogenicity-related proteins were identified as succinylated proteins, suggesting an involvement of succinylation in pathogenicity. Our results provide the first comprehensive view of the P. oryzae succinylome and may aid to find potential pathogenicity-related proteins to control the rice blast disease. Significance Plant pathogens represent a great threat to world food security, and enormous reduction in the global yield of rice was caused by P. oryzae infection. Here, the succinylated proteins in P. oryzae were identified. Furthermore, comparison of succinylation sites among various species, indicating that different degrees of succinylation may be involved in the regulation of basal metabolism. This data facilitates our understanding of the metabolic pathways and proteins that are associated with pathogenicity.


Asunto(s)
Magnaporthe/metabolismo , Enfermedades de las Plantas/microbiología , Proteoma/análisis , Ácido Succínico/química , Cromatografía Líquida de Alta Presión , Ciclo del Ácido Cítrico , Proteínas Fúngicas/clasificación , Proteínas Fúngicas/metabolismo , Lisina/química , Lisina/metabolismo , Magnaporthe/patogenicidad , Redes y Vías Metabólicas , Oryza/microbiología , Péptidos/análisis , Péptidos/química , Filogenia , Procesamiento Proteico-Postraduccional , Proteoma/química , Espectrometría de Masas en Tándem
10.
Virulence ; 10(1): 292-314, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30905264

RESUMEN

Peroxisomes are ubiquitous organelles in eukaryotic cells that fulfill multiple important metabolisms. Pex13 and Pex14 are key components of the peroxisomal docking complex in yeasts and mammals. In the present work, we functionally characterized the homologues of Pex13 and Pex14 (Mopex13 and Mopex14) in the rice blast fungus Magnaporthe oryzae. Mopex13 and Mopex14 were peroxisomal membrane distributed and were both essential for the maintenance of Mopex14/17 on the peroxisomal membrane. Mopex13 and Mopex14 interacted with each other, and with Mopex14/17 and peroxisomal matrix protein receptors. Disruption of Mopex13 and Mopex14 resulted in a cytoplasmic distribution of peroxisomal matrix proteins and the Woronin body protein Hex1. In the ultrastructure of Δmopex13 and Δmopex14 cells, peroxisomes were detected on fewer occasions, and the Woronin bodies and related structures were dramatically affected. The Δmopex13 and Δmopex14 mutants were reduced in vegetative growth, conidial generation and mycelial melanization, in addition, Δmopex13 showed reduced conidial germination and appressorial formation and abnomal appressorial morphology. Both Δmopex13 and Δmopex14 were deficient in appressorial turgor and nonpathogenic to their hosts. The infection failures in Δmopex13 and Δmopex14 were also due to their reduced ability to degrade fatty acids and to endure reactive oxygen species and cell wall-disrupting compounds. Additionally, Mopex13 and Mopex14 were required for the sexual reproduction of the fungus. These data indicate that Mopex13 and Mopex14, as key components of the peroxisomal docking complex, are indispensable for peroxisomal biogenesis, fungal development and pathogenicity in the rice blast fungus.


Asunto(s)
Proteínas Fúngicas/genética , Interacciones Huésped-Patógeno , Magnaporthe/genética , Magnaporthe/patogenicidad , Peroxisomas/genética , Secuencia de Aminoácidos , Proteínas Fúngicas/metabolismo , Hordeum/microbiología , Oryza/microbiología , Peroxisomas/metabolismo , Enfermedades de las Plantas/microbiología , Virulencia
11.
Molecules ; 22(10)2017 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-29064450

RESUMEN

Equol, a metabolite of soybean isoflavone daidzein, has been proven to have various bioactivities related to human health, but little is known on its antifungal activity to plant fungal pathogens. Magnaporthe oryzae is a phytopathogenic fungus that causes rice blast, a devastating disease on rice. Here, we demonstrated that equol influences the development and pathogenicity of M. oryzae. Equol showed a significant inhibition to the mycelial growth, conidial generation and germination, and appressorial formation of M. oryzae. As a result, equol greatly reduced the virulence of M. oryzae on rice and barley leaves. The antifungal activity of equol was also found in several other plant fungal pathogens. These findings expand our knowledge on the bioactivities of equol.


Asunto(s)
Equol , Fungicidas Industriales , Magnaporthe/efectos de los fármacos , Oryza/microbiología , Enfermedades de las Plantas/prevención & control , Magnaporthe/patogenicidad , Enfermedades de las Plantas/terapia , Hojas de la Planta/efectos de los fármacos , Esporas Fúngicas/efectos de los fármacos
12.
Mol Plant Pathol ; 18(9): 1238-1252, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-27571711

RESUMEN

Peroxisomes are ubiquitous organelles in eukaryotic cells that fulfil a variety of biochemical functions. The biogenesis of peroxisomes requires a variety of proteins, named peroxins, which are encoded by PEX genes. Pex14/17 is a putative recently identified peroxin, specifically present in filamentous fungal species. Its function in peroxisomal biogenesis is still obscure and its roles in fungal pathogenicity have not yet been documented. Here, we demonstrate the contributions of Pex14/17 in the rice blast fungus Magnaporthe oryzae (Mopex14/17) to peroxisomal biogenesis and fungal pathogenicity by targeting gene replacement strategies. Mopex14/17 has properties of both Pex14 and Pex17 with regard to its protein sequence. Mopex14/17 is distributed at the peroxisomal membrane and is essential for efficient peroxisomal targeting of proteins containing peroxisomal targeting signal 1. MoPEX19 deletion leads to the cytoplasmic distribution of Mopex14/17, indicating that the peroxisomal import of Pex14/17 is dependent on Pex19. The knockout mutants of MoPEX14/17 show reduced fatty acid utilization, reactive oxygen species (ROS) degradation and cell wall integrity. Moreover, Δmopex14/17 mutants show delayed conidial generation and appressorial formation, and a reduction in appressorial turgor accumulation and penetration ability in host plants. These defects result in a significant reduction in the virulence of the mutant. These data indicate that MoPEX14/17 plays a crucial role in peroxisome biogenesis and contributes to fungal development and pathogenicity.


Asunto(s)
Proteínas Fúngicas/metabolismo , Magnaporthe/patogenicidad , Peroxinas/metabolismo , Peroxisomas/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas Fúngicas/genética , Peroxinas/genética , Virulencia
13.
PLoS One ; 10(3): e0120627, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25793615

RESUMEN

Magnaporthe oryzae is a hemibiotrophic fungal pathogen that causes rice blast disease. A compatible interaction requires overcoming plant defense responses to initiate colonization during the early infection process. Nitric oxide (NO) plays important roles in defense responses during host-pathogen interactions. Microbes generally protect themselves against NO-induced damage by using enzymes. Here, we characterized an S-(hydroxymethyl)-glutathione dehydrogenase gene in M. oryzae, MoSFA1, the homologs of which are involved in NO metabolism by specifically catalyzing the reduction of S-nitrosoglutathione (GSNO) in yeasts and plants. As expected from the activities of S-(hydroxymethyl)glutathione dehydrogenase in formaldehyde detoxification and GSNO reduction, MoSFA1 deletion mutants were lethal in formaldehyde containing medium, sensitive to exogenous NO and exhibited a higher level of S-nitrosothiols (SNOs) than that of the wild type. Notably, the mutants showed severe reduction of conidiation and appressoria turgor pressure, as well as significantly attenuated the virulence on rice cultivar CO-39. However, the virulence of MoSFA1 deletion mutants on wounded rice leaf was not affected. An infection assay on barley leaf further revealed that MoSFA1 deletion mutants exhibited a lower infection rate, and growth of infectious hyphae of the mutants was retarded not only in primary infected cells but also in expansion from cell to cell. Furthermore, barley leaf cell infected by MoSFA1 deletion mutants exhibited a stronger accumulation of H2O2 at 24 and 36 hpi. MoSFA1 deletion mutants displayed hypersensitivity to different oxidants, reduced activities of superoxide dismutases and peroxidases, and lower glutathione content in cells, compared with the wild type. These results imply that MoSFA1-mediated NO metabolism is important in redox homeostasis in response to development and host infection of M. oryzae. Taken together, this work identifies that MoSFA1 is required for conidiation and contributes to virulence in the penetration and biotrophic phases in M. oryzae.


Asunto(s)
Magnaporthe/enzimología , Magnaporthe/patogenicidad , Oryza/microbiología , Oxidorreductasas/metabolismo , Enfermedades de las Plantas/microbiología , Expresión Génica , Genes Letales , Prueba de Complementación Genética , Glutatión/metabolismo , Peróxido de Hidrógeno/metabolismo , Magnaporthe/genética , Mutación , Óxido Nítrico/metabolismo , Estrés Oxidativo , Oxidorreductasas/genética , S-Nitrosotioles/metabolismo , Virulencia/genética
14.
PLoS One ; 9(1): e85252, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24454828

RESUMEN

Peroxisomes are present ubiquitously and make important contributions to cellular metabolism in eukaryotes. They play crucial roles in pathogenicity of plant fungal pathogens. The peroxisomal matrix proteins and peroxisomal membrane proteins (PMPs) are synthesized in the cytosol and imported post-translationally. Although the peroxisomal import machineries are generally conserved, some species-specific features were found in different types of organisms. In phytopathogenic fungi, the pathways of the matrix proteins have been elucidated, while the import machinery of PMPs remains obscure. Here, we report that MoPEX19, an ortholog of ScPEX19, was required for PMPs import and peroxisomal maintenance, and played crucial roles in metabolism and pathogenicity of the rice blast fungus Magnaporthe oryzae. MoPEX19 was expressed in a low level and Mopex19p was distributed in the cytoplasm and newly formed peroxisomes. MoPEX19 deletion led to mislocalization of peroxisomal membrane proteins (PMPs), as well peroxisomal matrix proteins. Peroxisomal structures were totally absent in Δmopex19 mutants and woronin bodies also vanished. Δmopex19 exhibited metabolic deficiency typical in peroxisomal disorders and also abnormality in glyoxylate cycle which was undetected in the known mopex mutants. The Δmopex19 mutants performed multiple disorders in fungal development and pathogenicity-related morphogenesis, and lost completely the pathogenicity on its hosts. These data demonstrate that MoPEX19 plays crucial roles in maintenance of peroxisomal and peroxisome-derived structures and makes more contributions to fungal development and pathogenicity than the known MoPEX genes in the rice blast fungus.


Asunto(s)
Proteínas Fúngicas/metabolismo , Magnaporthe/crecimiento & desarrollo , Magnaporthe/metabolismo , Proteínas de la Membrana/metabolismo , Oryza/microbiología , Peroxisomas/metabolismo , Secuencia de Aminoácidos , Pared Celular/metabolismo , Citoplasma/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Hifa/citología , Hifa/crecimiento & desarrollo , Hifa/metabolismo , Magnaporthe/citología , Magnaporthe/patogenicidad , Proteínas de la Membrana/química , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Eliminación de Secuencia , Homología de Secuencia de Ácido Nucleico , Esporas Fúngicas/citología , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/metabolismo
15.
PLoS One ; 8(2): e55554, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23405169

RESUMEN

Peroxisomes participate in various important metabolisms and are required in pathogenicity of fungal plant pathogens. Peroxisomal matrix proteins are imported from cytoplasm into peroxisomes through peroxisomal targeting signal 1 (PTS1) or peroxisomal targeting signal 2 (PTS2) import pathway. PEX5 and PEX7 genes participate in the two pathways respectively. The involvement of PEX7 mediated PTS2 import pathway in fungal pathogenicity has been documented, while that of PTS1 remains unclear. Through null mutant analysis of MoPEX5, the PEX5 homolog in Magnaporthe oryzae, we report the crucial roles of PTS1 pathway in the development and host infection in the rice blast fungus, and compared with those of PTS2. We found that MoPEX5 disruption specifically blocked the PTS1 pathway. Δmopex5 was unable to use lipids as sole carbon source and lost pathogenicity completely. Similar as Δmopex7, Δmopex5 exhibited significant reduction in lipid utilization and mobilization, appressorial turgor genesis and H(2)O(2) resistance. Additionally, Δmopex5 presented some distinct defects which were undetected in Δmopex7 in vegetative growth, conidial morphogenesis, appressorial morphogenesis and melanization. The results indicated that the PTS1 peroxisomal import pathway, in addition to PTS2, is required for fungal development and pathogenicity of the rice blast fungus, and also, as a main peroxisomal import pathway, played a more predominant role than PTS2.


Asunto(s)
Proteínas Fúngicas/metabolismo , Magnaporthe/patogenicidad , Oryza/microbiología , Peroxisomas/metabolismo , Enfermedades de las Plantas/microbiología , Receptores Citoplasmáticos y Nucleares/metabolismo , Secuencia de Aminoácidos , Southern Blotting , Clonación Molecular , Proteínas Fúngicas/genética , Peróxido de Hidrógeno/metabolismo , Magnaporthe/genética , Magnaporthe/crecimiento & desarrollo , Microscopía Electrónica de Transmisión , Datos de Secuencia Molecular , Oryza/genética , Oryza/crecimiento & desarrollo , Receptor de la Señal 2 de Direccionamiento al Peroxisoma , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Fenotipo , Transporte de Proteínas , Receptores Citoplasmáticos y Nucleares/genética , Homología de Secuencia de Aminoácido , Transducción de Señal , Esporas Fúngicas/metabolismo
16.
Yi Chuan ; 34(5): 635-46, 2012 May.
Artículo en Chino | MEDLINE | ID: mdl-22659436

RESUMEN

The family members of PEX11 are key factors involved in regulation of peroxisome proliferation. Sixty-six PEX11p candidates of PEX11 gene family from 26 representative fungal species were obtained and analyzed by bioinformatic strategies. In most filamentous fungi, 2 or 3 potential PEX11ps were found, in contrast with 1 or 2 in yeast species. Compared with other fungal species, the Ascomycetes tend to have more PEX11ps, and even 5 in several individuals. The data of phylogenetic analysis and protein structure indicated that all of the PEX11ps were divided into 3 groups: I, II, and III. The members of group I and group III existed in most species, while those in group II were found only in Pezizomycotina. By MEME analysis, 5-6 conserved motifs were found in each PEX11ps. Among them,motif 8 in C-terminal had the most conservation, indicating that this motif probably plays a key role in maintaining the proper function of PEX11p.


Asunto(s)
Biología Computacional , Proteínas Fúngicas/fisiología , Peroxisomas/fisiología , Secuencia de Aminoácidos , Proliferación Celular , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/fisiología , Datos de Secuencia Molecular , Peroxinas , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología
17.
J Genet Genomics ; 38(5): 209-16, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21621742

RESUMEN

Rice blast, caused by Magnaporthe oryzae, is one of the most devastating diseases. Using map-based strategy and in silico approach we isolated a new rice (Oryza sativa L.) blast resistance allele of Pid3, designated Pi25, from a stable blast resistance cultivar Gumei2. Over-expression analysis and complementation test showed that Pi25 conferred blast resistance to M. oryzae isolate js001-20. Sequence analysis showed that Pi25 was an intronless gene of 2,772 nucleotides with single nucleotide substitution in comparison to Pid3 at the nucleotide position 459 and predicatively encoded a typical coiled coil--nucleotide binding site--leucine rich repeat (CC--NBS--LRR) protein of 924 amino acid residuals with 100% identity to Pid3 putative protein. The susceptible allele pi25 in Nipponbare contained a nonsense mutation at the nucleotide position 2,209 resulting in a truncated protein with 736 amino acid residuals. In addition, 14 nucleotide substitutions resulting in 10 amino acid substitutions were identified between Pi25 and pi25 upstream the premature stop codon in the susceptible allele. Although the mechanism of Pi25/Pid3-mediated resistance needs to be further investigated, the isolation of the allele would facilitate the utilization of Pi25/Pid3 in rice blast resistance breeding program via transgenic approach and marker assisted selection.


Asunto(s)
Alelos , Resistencia a la Enfermedad/genética , Genes de Plantas/genética , Magnaporthe/fisiología , Oryza/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Secuencia de Aminoácidos , Cruzamiento , Clonación Molecular , Biología Computacional , Genes de Plantas/inmunología , Prueba de Complementación Genética , Datos de Secuencia Molecular , Sistemas de Lectura Abierta/genética , Oryza/clasificación , Oryza/inmunología , Oryza/microbiología , Filogenia , Enfermedades de las Plantas/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reacción en Cadena de la Polimerasa , Alineación de Secuencia
18.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(10): 2730-3, 2009 Oct.
Artículo en Chino | MEDLINE | ID: mdl-20038048

RESUMEN

Site-specific variable pesticide application is one of the major precision crop production management operations. Rice blast is a severe threat for rice production. Traditional chemistry methods can do the accurate crop disease identification, however they are time-consuming, require being executed by professionals and are of high cost. Crop disease identification and classification by human sight need special crop protection knowledge, and is low efficient. To obtain fast, reliable, accurate rice blast disease information is essential for achieving effective site-specific pesticide applications and crop management. The present paper describes a multi-spectral leaf blast identification and classification image sensor, which uses three channels of crop leaf and canopy images. The objective of this work was to develop and evaluate an algorithm under simplified lighting conditions for identifying damaged rice plants by the leaf blast using digital color images. Based on the results obtained from this study, the seed blast identification accuracy can be achieved at 95%, and the leaf blast identification accuracy can be achieved at 90% during the rice growing season. Thus it can be concluded that multi-spectral camera can provide sufficient information to perform reasonable rice leaf blast estimation.


Asunto(s)
Oryza , Enfermedades de las Plantas , Algoritmos , Plaguicidas , Hojas de la Planta
19.
Sheng Wu Gong Cheng Xue Bao ; 25(1): 129-38, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19441238

RESUMEN

To improve the efficiency of targeted gene replacement (TGR), a dual screen (DS) system with gusA gene as negative selective marker (GUS-DS) was developed in Magnaporthe oryzae. First, we tested the endogenous beta-glucuronidase (GUS) activities of 78 fungal strains. All tested strains were GUS-, only with 3 exceptions. Whereas, after the gusA being introduced in, M. oryzae, Fusarium oxysporum and Colletotrichum lagenarium acquired high GUS activities. The gusA is thus usable as a selective maker in fungal species. With gusA as the negative marker, HPH gene as the positive marker, and the peroxisomal targeting signal receptor genes MGPEX5 and MGPEX7 as 2 instances of target genes, we established the GUS-DS system. After transformation, we collected the transformants from hygromycin B screen media and then tested the GUS activities of them. The GUS- ones were selected as potential mutants and checked in succession by PCR and Southern blotting to identify the true mutants and calculate the efficiency of GUS-DS. As a result, GUS-DS improved the screen efficiency for delta mgpex5 from 65.8% to 90.6%, and for delta mgpex7 from 31.2% to 82.8%. In addition, we established a multiple PCR (M-PCR) method for mutant confirmation. By amplifying the different regions at the targeted locus, M-PCR differentiated the wild type, the ectopic transformants and the mutants effectively and rapidly, and had the same reliability as Southern blotting. In conclusion, GUS-DS and M-PCR are useful tools to improve the efficiency of TGR and would be helpful for fungal genomics.


Asunto(s)
Glucuronidasa/genética , Magnaporthe/genética , Mutagénesis Insercional/métodos , Mutación , Escherichia coli/enzimología , Escherichia coli/genética , Regulación Enzimológica de la Expresión Génica , Genes Fúngicos , Recombinación Genética , Transformación Genética
20.
J Zhejiang Univ Sci B ; 9(10): 802-10, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18837108

RESUMEN

The peroxisomal matrix proteins involved in many important biological metabolism pathways in eukaryotic cells are encoded by nucleal genes, synthesized in the cytoplasm and then transported into the organelles. Targeting and import of these proteins depend on their two peroxisomal targeting signals (PTS1 and PTS2) in sequence as we have known so far. The vectors of the fluorescent fusions with PTS, i.e., green fluorescence protein (GFP)-PTS1, GFP-PTS2 and red fluorescence protein (RFP)-PTS1, were constructed and introduced into Magnaporthe oryzae Guy11 cells. Transformants containing these fusions emitted fluorescence in a punctate pattern, and the locations of the red and green fluorescence overlapped exactly in RFP-PTS1 and GFP-PTS2 co-transformed strains. These data indicated that both PTS1 and PTS2 fusions were imported into peroxisomes. A probable higher efficiency of PTS1 machinery was revealed by comparing the fluorescence backgrounds in GFP-PTS1 and GFP-PTS2 transformants. By introducing both RFP-PTS1 and GFP-PTS2 into Deltamgpex6 mutants, the involvement of MGPEX6 gene in both PTS1 and PTS2 pathways was proved. In addition, using these transformants, the inducement of peroxisomes and the dynamic of peroxisomal number during the pre-penetration processes were investigated as well. In summary, by the localization and co-localization of PTS1 and PTS2, we provided a useful tool to evaluate the biological roles of the peroxisomes and the related genes.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Magnaporthe/genética , Magnaporthe/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Secuencia de Bases , Cartilla de ADN/genética , ADN de Hongos/genética , Genes Fúngicos , Vectores Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Mutación , Receptor de la Señal 2 de Direccionamiento al Peroxisoma , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Peroxisomas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transformación Genética , Proteína Fluorescente Roja
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA