Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 14: 1209860, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37799560

RESUMEN

Rice is the major source of arsenic (As) intake in humans, as this staple crop readily accumulates As in the grain. Identifying the genes and molecular mechanisms underlying As accumulation and tolerance is a crucial step toward developing rice with reduced As levels. We identified 25 rice genes that improve As tolerance in yeast cells by expressing a complementary DNA (cDNA) library generated from As-treated rice roots. Among them, a zinc finger-type transcription factor VASCULAR PLANT ONE- ZINC FINGER 1 (OsVOZ1) (OsVOZ1) conferred the most pronounced As tolerance. OsVOZ1 inhibits As accumulation in yeast via activation of As efflux transporter Acr3p by post-transcriptional modification in yeast. The Arabidopsis voz1 voz2 double-knockout mutant exhibited As hypersensitivity, altered As concentrations in various tissues, and reduced As transport activity via the phloem. Arabidopsis and rice VOZs were highly expressed in phloem cells in various tissues, which are critical for As distribution in plant tissues. The double-knockdown and single-knockout plants of OsVOZ1 and OsVOZ2 reduced As accumulation in their seeds. These findings suggest that rice and Arabidopsis VOZs regulate the translocation of As into tissues by regulating the phloem loading of this element.

2.
Bioresour Technol ; 361: 127731, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35934246

RESUMEN

The effect of sudden augmentation with fish waste (FW) on an operating anaerobic digester was investigated. Fifteen repeated FW spikes (FWS) composed of 1% or 5% FW per working volume of digester were suddenly fed into semi-continuous operation of a mixture of sludge and food waste. Overall process efficiency was not inhibited by FW augmentation. The bacterial community were clustered differently in the 5% FWS treatment than in the control and 1% FWS. Protein-degrading bacteria (Porphyromonadacea, Family XI, and Family XII) were commonly found in the 5% FWS treatment. Their proportions positively correlated with numbers of other bacteria and dominant methanogens (Methanosaeta and Methanospirillum), showing their important role in FWS digestion. FWS caused a shift of bacteria community, but an increase in archaeal concentration. Therefore, sudden addition of an appropriate amount of FW to existing digesters did not provoke process failure. This result contributes an ecologically-benign method to process FW.


Asunto(s)
Eliminación de Residuos , Aguas del Alcantarillado , Anaerobiosis , Animales , Bacterias , Reactores Biológicos/microbiología , Digestión , Alimentos , Metano
3.
Bioresour Technol ; 349: 126834, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35149182

RESUMEN

Initial microbial compositions would be the precursor for the efficient anaerobic digestion (AD) of fish waste (FW). A mesophilic batch test was conducted using four seeds collected from different digesters treating various combinations of substrates to investigate their effects on FW degradation. Key microbial groups were identified by 16s rRNA gene-based metagenomics analysis. Among four, the seed from the digester co-digesting livestock manure, food waste, and food wastewater showed the best performance and obtained the highest methane yield (350.5 ± 5.2 mL/gVSadded) and lowest lag phase (0.6 ± 0.1 d). Proteiniphilum, Aminobacterium, dgA-11 gut group, and Syntrophomonas were dominant bacterial genera identified in FW degradation. Methanosaeta was the dominant methanogen in the best performing seed and microbial network analysis revealed its contribution to achieving the highest CH4 yield. Obtained results could be useful in selecting microbial seed sources to avoid system imbalance in full-scale digesters that treat FW.


Asunto(s)
Reactores Biológicos , Eliminación de Residuos , Anaerobiosis , Animales , Reactores Biológicos/microbiología , Alimentos , Metano/metabolismo , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Aguas del Alcantarillado
4.
Plant Physiol ; 189(1): 360-374, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35166840

RESUMEN

A-type ATP-binding cassette (ABCA) proteins transport lipids and lipid-based molecules in humans, and their malfunction is associated with various inherited diseases. Although plant genomes encode many ABCA transporters, their molecular and physiological functions remain largely unknown. Seeds are rapidly developing organs that rely on the biosynthesis and transport of large quantities of lipids to generate new membranes and storage lipids. In this study, we characterized the Arabidopsis (Arabidopsis thaliana) ABCA10 transporter, which is selectively expressed in female gametophytes and early developing seeds. By 3 d after flowering (DAF), seeds from the abca10 loss-of-function mutant exhibited a smaller chalazal endosperm than those of the wild-type. By 4 DAF, their endosperm nuclei occupied a smaller area than those of the wild-type. The endosperm nuclei of the mutants also failed to distribute evenly inside the seed coat and stayed aggregated instead, possibly due to inadequate expansion of abca10 endosperm. This endosperm defect might have retarded abca10 embryo development. At 7 DAF, a substantial portion of abca10 embryos remained at the globular or earlier developmental stages, whereas wild-type embryos were at the torpedo or later stages. ABCA10 is likely involved in lipid metabolism, as ABCA10 overexpression induced the overaccumulation of triacylglycerol but did not change the carbohydrate or protein contents in seeds. In agreement, ABCA10 localized to the endoplasmic reticulum (ER), the major site of lipid biosynthesis. Our results reveal that ABCA10 plays an essential role in early seed development, possibly by transporting substrates for lipid metabolism to the ER.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Adenosina Trifosfato/metabolismo , Proteínas de Arabidopsis/metabolismo , Endospermo/metabolismo , Regulación de la Expresión Génica de las Plantas , Humanos , Lípidos/análisis , Semillas
5.
Bioresour Technol ; 333: 125145, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33906017

RESUMEN

Anaerobic digestion (AD) of protein-rich wastes is problematic due to production of ammonia and hydrogen sulfide. In this work, eight inocula were used in batch AD of solutions of gelatin and gluten at 3 g COD substrate/1g VSS inoculum. AD plants from which inocula originated were treating food waste or food wastewater, wastewater sludge, or a combination of them. Inocula were evaluated by fitting methane production data using the modified Gompertz model. Sequencing of 16 s rRNA of microorganisms showed that Methanoculleus was dominant in inocula from plants that were treating food waste, and Methanosaeta was dominant in the others. The maximum methane production rate varied by a factor of three for each substrate: 2.734-7.438 mLCH4 gCOD-1 d-1 for gelatin, and 1.950 to 5.532 mLCH4 gCOD-1 d-1 for gluten. This study demonstrates that inoculum must be chosen appropriately when treating proteinaceous waste by AD.


Asunto(s)
Reactores Biológicos , Eliminación de Residuos , Anaerobiosis , Alimentos , Metano , Proteolisis , Aguas del Alcantarillado
6.
Sci Rep ; 9(1): 8184, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-31160681

RESUMEN

The photoautotrophic cyanobacterium Synechocystis sp. PCC 6803 assimilates carbon dioxide as the sole carbon source, and a major portion of the assimilated carbon is metabolically consumed by the tricarboxylic acid (TCA) cycle. Effects of partial interference of TCA cycle metabolic activity on other carbon metabolism have yet to be examined. Here, the γ-aminobutyric acid (GABA) shunt, one of the metabolic pathways for completing TCA cycle in Synechocystis, was disrupted via inactivating the glutamate decarboxylase gene (gdc). Under normal photoautotrophic condition, cell growth and the level of the TCA cycle metabolites succinate, malate and citrate were decreased by 25%, 35%, 19% and 28%, respectively, in Δgdc mutant relative to those in the wild type (WT). The cellular levels of glycogen and total lipids of the Δgdc mutant were comparable to those of the WT, but the intracellular levels of pyruvate and bioplastic poly(3-hydroxybutyrate) (PHB) were 1.23- and 2.50-fold higher, respectively, in Δgdc mutant. Thus, disruption of the GABA shunt pathway reduced the TCA cycle metabolites levels, but positively enhanced the bioaccumulation of pyruvate and PHB. The PHB production rate in Δgdc mutant was 2.0-fold higher than in the WT under normal photoautotrophy.


Asunto(s)
Carbono/metabolismo , Cianobacterias/metabolismo , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Dióxido de Carbono/metabolismo , Ciclo del Ácido Cítrico , Glutamato Descarboxilasa/metabolismo , Glucógeno/metabolismo , Redes y Vías Metabólicas/genética , Ácido Pirúvico/metabolismo , Ácido Succínico/metabolismo , Ácido gamma-Aminobutírico/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA