Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 6 de 6
1.
J Phys Condens Matter ; 33(3)2020 Oct 16.
Article En | MEDLINE | ID: mdl-32992300

A tight binding network of diamond shaped unit cells trapping a staggered magnetic flux distribution is shown to exhibit a topological phase transition under a controlled variation of the flux trapped in a cell. A simple real space decimation technique maps a binary flux staggered network into an equivalent Su-Shrieffer-Heeger (SSH) model. In this way, dealing with a subspace of the full degrees of freedom, we show that a topological phase transition can be initiated by tuning the applied magnetic field that eventually simulates an engineering of the numerical values of the overlap integrals in the paradigmatic SSH model. Thus one can use an external agent, rather than monitoring the intrinsic property of a lattice to control the topological properties. This is advantageous from an experimental point of view. We also provide an in-depth description and analysis of the topologically protected edge states, and discuss how, by tuning the flux from outside one can enhance the spatial extent of the Aharonov-Bohm caging of single particle states for any arbitrary period of staggering. This feature can be useful for the study of transport of quantum information. Our results are exact.

2.
Sci Rep ; 9(1): 5930, 2019 Apr 11.
Article En | MEDLINE | ID: mdl-30976024

We investigate a simple tight-binding Hamiltonian to understand the stability of spin-polarized transport of states with an arbitrary spin content in the presence of disorder. The general spin state is made to pass through a linear chain of magnetic atoms, and the localization lengths are computed. Depending on the value of spin, the chain of magnetic atoms unravels a hidden transverse dimensionality that can be exploited to engineer energy regimes where only a selected spin state is allowed to retain large localization lengths. We carry out a numerical anmalysis to understand the roles played by the spin projections in different energy regimes of the spectrum. For this purpose, we introduce a new measure, dubbed spin-resolved localization length. We study uncorrelated disorder in the potential profile offered by the magnetic substrate or in the orientations of the magnetic moments concerning a given direction in space. Our results show that the spin filtering effect is robust against weak disorder and hence the proposed system should be a good candidate model for experimental realizations of spin-selective transport devices.

3.
Phys Chem Chem Phys ; 19(32): 21584-21594, 2017 Aug 16.
Article En | MEDLINE | ID: mdl-28766610

Tetragonal graphene (T-graphene) is a theoretically proposed dynamically stable, metallic allotrope of graphene. In this theoretical investigation, a tight binding (TB) model is used to unravel the metal to semiconductor transition of this 2D sheet under the influence of an external magnetic flux. In addition, the environment under which the sheet exposes an appreciable direct band gap of 1.41 ± 0.01 eV is examined. Similarly, the electronic band structure of the narrowest armchair T-graphene nanoribbon (NATGNR) also gets modified with different combinations of magnetic fluxes through the elementary rings. The band tuning parameters are critically identified for both systems. It is observed that the induced band gaps vary remarkably with the tuning parameters. We have also introduced an exact analytical approach to address the band structure of the NATGNR in the absence of any magnetic flux. Finally, the optical properties of the sheet and NATGNR are also critically analysed for both parallel and perpendicular polarizations with the help of density functional theory (DFT). Our study predicts that this material and its nanoribbons can be used in optoelectronic devices.

4.
J Phys Condens Matter ; 28(33): 335301, 2016 08 24.
Article En | MEDLINE | ID: mdl-27352129

We design spin filters for particles with potentially arbitrary spin [Formula: see text] using a one-dimensional periodic chain of magnetic atoms as a quantum device. Describing the system within a tight-binding formalism we present an analytical method to unravel the analogy between a one-dimensional magnetic chain and a multi-strand ladder network. This analogy is crucial, and is subsequently exploited to engineer gaps in the energy spectrum by an appropriate choice of the magnetic substrate. We obtain an exact correlation between the magnitude of the spin of the incoming beam of particles and the magnetic moment of the substrate atoms in the chain desired for opening up of a spectral gap. Results of spin polarized transport, calculated within a transfer matrix formalism, are presented for particles having half-integer as well as higher spin states. We find that the chain can be made to act as a quantum device which opens a transmission window only for selected spin components over certain ranges of the Fermi energy, blocking them in the remaining part of the spectrum. The results appear to be robust even when the choice of the substrate atoms deviates substantially from the ideal situation, as verified by extending the ideas to the case of a 'spin spiral'. Interestingly, the spin spiral geometry, apart from exhibiting the filtering effect, is also seen to act as a device flipping spins-an effect that can be monitored by an interplay of the system size and the period of the spiral. Our scheme is applicable to ultracold quantum gases, and might inspire future experiments in this direction.

5.
J Phys Condens Matter ; 27(12): 125501, 2015 Apr 01.
Article En | MEDLINE | ID: mdl-25751071

We demonstrate, by explicit construction, that a single band tight binding Hamiltonian defined on a class of deterministic fractals of the b = 3N Sierpinski type can give rise to an infinity of dispersionless, flat-band like states which can be worked out analytically using the scale invariance of the underlying lattice. The states are localized over clusters of increasing sizes, displaying the existence of a multitude of localization areas. The onset of localization can, in principle, be 'delayed' in space by an appropriate choice of the energy of the electron. A uniform magnetic field threading the elementary plaquettes of the network is shown to destroy this staggered localization and generate absolutely continuous sub-bands in the energy spectrum of these non-translationally invariant networks.

6.
Phys Rev Lett ; 101(7): 076803, 2008 Aug 15.
Article En | MEDLINE | ID: mdl-18764565

We prove that a tight-binding ladder network composed of atomic sites with on-site potentials distributed according to the quasiperiodic Aubry model can exhibit a metal-insulator transition at multiple values of the Fermi energy. For specific values of the first and second neighbor electron hopping, the result is obtained exactly. With a more general model, we numerically calculate the two-terminal conductance. The numerical results corroborate the analytical findings.

...