Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 50
1.
J Phys Chem Lett ; 15(16): 4468-4476, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38631022

The underlying mechanism and intermediate formation in the self-assembly of aromatic amino acids, peptides, and proteins remain elusive despite numerous reports. We, for the first time, report that one can stabilize the intermediates by tuning the metal ion-amino acid interaction. Microscopic and spectroscopic investigations of the self-assembly of carboxybenzyl (Z)-protected phenylalanine (ZF) reveal that the bivalent metal ions eventually lead to the formation of fibrillar networks similar to blank ZF whereas the trivalent ions develop vesicle-like intermediates that do not undergo fibrillation for a prolonged time. The time-lapse measurement of surface charge reveals that the surface charge of blank ZF and in the presence of bivalent metal ions changes from a negative value to zero, implying unstable intermediates leading to the fibril network. Strikingly, a prominent charge inversion from an initial negative value to a positive value in the presence of trivalent metal ions imparts unusual stability to the metastable intermediates.


Phenylalanine , Phenylalanine/chemistry , Surface Properties , Ions/chemistry , Metals/chemistry
2.
Langmuir ; 40(8): 4531-4543, 2024 02 27.
Article En | MEDLINE | ID: mdl-38357868

Conventional gold nanoparticles (Au NPs) have many limitations, such as aggregation and subsequent precipitation in the medium of high ionic strength and protein molecules. Furthermore, when exposed to biological fluids, nanoparticles form a protein corona, which controls different biological processes such as the circulation lifetime, drug release profile, biodistribution, and in vivo cellular distribution. These limitations reduce the functionality of Au NPs in targeted delivery, bioimaging, gene delivery, drug delivery, and other biomedical applications. To circumvent these problems, there are numerous attempts to design corona-free and stable nanoparticles. Here, we report for the first time that lipid corona (coating of lipid) formation on phenylalanine-functionalized Au NPs (AuPhe NPs) imparts excellent stability against the high ionic strength of bivalent metal ions, amino acids, and proteins of different charges as compared to bare nanoparticles. Moreover, this work is focused on the ability of lipid corona formation on AuPhe NPs to prevent protein adsorption in the presence of cell culture medium (CCM), oppositely charged protein (e.g., histone 3), and human serum albumin (HSA). The results demonstrate that the lipid corona successfully protects the AuPhe NPs from protein adsorption, leading to the development of corona-free character. This unique achievement has profound implications for enhancing the biomedical utility and safety of these nanoparticles.


Metal Nanoparticles , Nanoparticles , Protein Corona , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Phenylalanine , Tissue Distribution , Nanoparticles/chemistry , Proteins , Protein Corona/chemistry , Lipids
3.
Molecules ; 28(10)2023 May 14.
Article En | MEDLINE | ID: mdl-37241827

Cholesta-5,7,9(11)-trien-3ß-ol (9,11-dehydroprovitamin D3, CTL) is used as a fluorescent probe to track the presence and migration of cholesterol in vivo. We recently described the photochemistry and photophysics of CTL in degassed and air-saturated tetrahydrofuran (THF) solution, an aprotic solvent. The zwitterionic nature of the singlet excited state, 1CTL* is revealed in ethanol, a protic solvent. In ethanol, the products observed in THF are accompanied by ether photoadducts and by photoreduction of the triene moiety to four dienes, including provitamin D3. The major diene retains the conjugated s-trans-diene chromophore and the minor is unconjugated, involving 1,4-addition of H at the 7 and 11 positions. In the presence of air, peroxide formation is a major reaction channel as in THF. X-ray crystallography confirmed the identification of two of the new diene products as well as of a peroxide rearrangement product.

4.
Langmuir ; 39(14): 4881-4894, 2023 04 11.
Article En | MEDLINE | ID: mdl-36988163

The aggregation and subsequent precipitation of gold nanoparticles (Au NPs) in the presence of protein molecules restrict the usefulness of NPs in biomedical applications. Till now, the influence of different properties of Au NPs (size, surface charge, surface coatings) and proteins (surface charge, chemical modification, folded and unfolded states) and pH and ionic strength of the solution on the aggregation of both Au NPs and proteins has been thoroughly discussed in the literature. However, the underlying different mechanistic pathways of the protein concentration-dependent aggregation of both Au NPs and proteins are poorly understood. The impact of the lipid corona on the protein-induced Au NP aggregation has remained an unresolved issue. In this context, we investigate the interaction of the negatively charged aromatic amino acid (phenylalanine and tyrosine)-functionalized gold nanoparticles (Au-AA NPs) with the positively charged globular protein lysozyme at different protein concentrations and compare the results with those of conventional citrate-functionalized Au NPs (Au-Cit NPs). Next, we conjugate lipids and proteins to Au NPs to impede the aggregation of Au NPs induced by the lysozyme. Our results reveal that the aggregation mechanism of the Au-AA NPs is distinctly different at low and high protein concentrations with the uniqueness of the Au-AA NPs over the Au-Cit NPs. Furthermore, we find that human serum albumin (HSA) protein-conjugated Au-AA and Au-Cit NPs are more effective in preventing the lysozyme-induced Au NP aggregation than bovine serum albumin (BSA)-conjugated Au NPs. For the first time, we also report the significant role of "hard" and "soft" lipid coronas in the aggregation of amino acid (phenylalanine)-functionalized gold nanoparticles in the presence of lysozyme protein.


Metal Nanoparticles , Protein Corona , Humans , Gold/chemistry , Metal Nanoparticles/chemistry , Muramidase , Lipids , Amino Acids, Aromatic , Phenylalanine
5.
J Phys Chem Lett ; 13(44): 10409-10417, 2022 Nov 10.
Article En | MEDLINE | ID: mdl-36322139

The self-assembly of aromatic amino acids has been widely studied due to their ability to form well-defined amyloid-like fibrillar structures. Herein, for the first time, we report the existence of different metastable intermediate states of diverse morphologies, for example, droplets, spheres, vesicles, flowers, and toroids, that are sequentially formed in aqueous medium during the self-assembly process of phenylalanine in the presence of different divalent (Zn2+, Cd2+, and Hg2+) and trivalent (Al3+, Ga3+, and In3+) metal ions having low pKa values. Due to metal ion-amino acid coordination and strong hydrophobic interaction induced by these metal ions, spherical aggregates are obtained at the initial stage of the structural evolution and further transformed into other intermediate states. Our work may facilitate understanding of the role of metal ions in the amino acid self-assembly process and broaden future applications of the obtained nanostructures in drug delivery, tissue engineering, bioimaging, biocatalysis, and other fields.


Metals , Phenylalanine , Phenylalanine/chemistry , Hydrophobic and Hydrophilic Interactions , Amyloid/chemistry , Amino Acids , Water/chemistry
6.
J Phys Chem B ; 126(11): 2241-2255, 2022 03 24.
Article En | MEDLINE | ID: mdl-35286092

In recent years, the underlying mechanism of formation of the lipid corona and its stability have begun to garner interest in the nanoscience community. However, until now, very little is known about the role of different properties of nanoparticles (NPs) (surface charge density, hydrophobicity, and size) in lipid corona formation. Apart from the physicochemical properties of NPs, the different properties of lipids remain elusive in lipid corona formation. In the present contribution, we have investigated the interaction of phenylalanine-functionalized gold NPs (Au-Phe NPs) with different zwitterionic lipid vesicles of different phase states (sol-gel and liquid crystalline at room temperature) as a function of lipid concentration. The main objective of the present work is to understand how the lipid phase affects lipid corona formation and lipid-induced aggregation in various media. Our results establish that the lipid phase state, area per lipid head group, and the buffer medium play important roles in lipid-induced aggregation. The lipid corona occurs for NPs at high lipid concentration, irrespective of the phase states and area per lipid head group of the lipid bilayer. Notably, the lipid corona also forms at a low concentration of lipid vesicles in the liquid crystalline phase (1,2-dioleoyl-sn-glycero-3-phosphocholine). The corona formation brings in remarkable stability to NPs against freeze-thaw cycles. Based on the stability, for the first time, we classify lipid corona as "hard lipid corona" and "soft lipid corona". This distinct classification will help to develop suitable nanomaterials for various biomedical applications.


Metal Nanoparticles , Nanoparticles , Protein Corona , Gold/chemistry , Lipid Bilayers , Metal Nanoparticles/chemistry , Molecular Dynamics Simulation , Nanoparticles/chemistry , Phenylalanine , Protein Corona/chemistry
7.
J Phys Chem B ; 125(45): 12436-12445, 2021 11 18.
Article En | MEDLINE | ID: mdl-34734524

Metal ions are known to strongly bind with different proteins and peptides, resulting in alteration of their different physicochemical properties. In this work, we investigate the effect of metal ions of different nuclear charges and sizes on the intrinsic blue luminescence of the self-assembled structures formed by aromatic amino acids, namely, phenylalanine and tryptophan, using spectroscopic and imaging techniques. The study reveals that the intrinsic blue fluorescence of amino acid assemblies is influenced by metal ions and the pH of the medium. The metal ions with a higher charge to radius ratio promote clusterization which results in the enhancement of the intrinsic fluorescence, an effect known as "clusteroluminescence" of the amino acids aggregates. The imaging study reveals that metal ions with a higher charge to size ratio inhibit the large fibrillation of aromatic amino acids by promoting the formation of small nonfibrillar aggregates through increased hydrophobicity in the medium. The nanoaggregates are assumed to be responsible for the enhancement in the blue "clusteroluminescence".


Amino Acids, Aromatic , Tryptophan , Amino Acids , Fluorescence , Ions
8.
Chem Commun (Camb) ; 57(72): 9080-9083, 2021 Sep 09.
Article En | MEDLINE | ID: mdl-34498617

We observe a unique distinct emission behaviour of hydrophobic carbon dots (H-CDs) embedded within the ordered and the disordered phase of a lipid membrane. The H-CDs exhibit blue emission in the disordered phase, however, they exhibit an intense red emission in the ordered phase of the lipid bilayer. The H-CDs have the potential ability to probe membrane dynamics like previously reported organic dyes. To the best of our knowledge, this is the first report of a CD-based membrane probe.

9.
ACS Omega ; 6(35): 22616-22624, 2021 Sep 07.
Article En | MEDLINE | ID: mdl-34514233

Indocyanine green (ICG) is a clinically approved near-infrared (NIR) contrast agent used in medical diagnosis. However, ICG has not been used to its fullest for biomedical imaging applications due to its low fluorescence quantum yield, aqueous instability, concentration-dependent aggregation, and photo and thermal degradations, leading to quenching of its fluorescence emission. In the present study, a nanosized niosomal formulation, ICGNiosomes (ICGNios), is fabricated to encapsulate and protect ICG from degradation. Interestingly, compared to free ICG, the ICGNios exhibited higher fluorescence quantum yield and fluorescence emission with a bathochromic shift. Also, ICGNios nanoparticles are biocompatible, biodegradable, and readily uptaken by the cells. Furthermore, ICGNios show more enhanced fluorescence intensity through ∼1 cm thick chicken breast tissue compared to free ICG, which showed minimal emission through the same thickness of tissue. Our results suggest that ICGNios could offer a promising platform for deep-tissue NIR in vivo imaging to visualize inaccessible tissue microstructures for disease diagnosis and therapeutics.

10.
Langmuir ; 37(16): 5022-5033, 2021 04 27.
Article En | MEDLINE | ID: mdl-33856214

The origin of the blue fluorescence of proteins and peptides in the visible region has been a subject of intense debate despite several efforts. Although aromatic amino acids, namely tryptophan (Trp), tyrosine (Tyr), and phenylalanine (Phe) are responsible for the intrinsic luminescence of proteins and peptides, the underlying mechanism and contributions of these amino acids to the unusual blue fluorescence are still not well resolved. In the present endeavor, we show that the clusterization of both aromatic and aliphatic amino acids on the surface of the gold nanoparticles (Au NPs) leads to clusteroluminescence, which could be linked to the unusual fluorescence properties of the proteins and peptides and have been ignored in the past. The amino acid monomers initially form small aggregates through clusterization, which provides the fundamental building blocks to establish the amyloid structure as well as the luminescence property. Because of the clusterization, these Au NPs/nano-aggregate systems are also found to exhibit remarkable stability against the freeze-thaw cycle and several other external stimuli, which can be useful for biological and biomedical applications.


Gold , Metal Nanoparticles , Amino Acids , Amino Acids, Aromatic , Tyrosine
11.
J Phys Chem B ; 125(8): 2113-2123, 2021 03 04.
Article En | MEDLINE | ID: mdl-33605726

The coating of proteins and lipids around the surface of the nanoparticles is known as "protein corona" and "lipid corona", respectively, which have promising biomedical applications. While protein corona formation is well-known, the lipid corona is relatively new and its stability is yet to be explored. In the present contribution, we report a novel lipid corona formation and its underlying mechanism using aromatic amino acid-functionalized gold nanoparticles (Au-AA NPs) as a template by means of spectroscopic (steady-state UV-visible and fluorescence) and imaging (CLSM, HR-TEM, and AFM) techniques. Our study demonstrates that in the presence of high lipid concentration Au-AA NPs intrinsically tow the lipid molecules from the lipid vesicles and decorate themselves by lipid leading to unique lipid corona formation. In contrast, at low lipid concentration Au-AA NPs undergo lipid-induced aggregation. The lipid-nanoparticle interaction is a time-dependent phenomenon and depends on the surface charge of both the lipid and the Au-AA NPs. The HR-TEM analysis indicates that the partial lipid coating is an intermediate step of lipid-induced aggregation and lipid corona formation of the Au-AA NPs. Significantly, we found that the colloidal property of these lipid-coated nanoparticles (lipid corona) is immune to resist extreme harsh conditions, that is, high acidic pH, several repetitive freeze-thaw cycles, and high salt concentration. The extra stability of Au-AA NPs upon the formation of lipid corona allows us to introduce new engineered nanoparticles for future prospective.


Metal Nanoparticles , Nanoparticles , Protein Corona , Amino Acids, Aromatic , Gold , Lipid Bilayers
12.
Langmuir ; 36(35): 10628-10637, 2020 09 08.
Article En | MEDLINE | ID: mdl-32787043

Photoluminescent carbon dots (C-dots) are widely used for bioimaging techniques to study different cellular processes. However, biocompatibility of C-dots is crucial because the wrong selection of C-dots may lead to an adverse effect on a particular cellular process. Herein, we investigate the interaction of zwitterionic lipid vesicles with photoluminescent C-dots derived from different isomeric (ortho, meta, and para) precursors of phenylenediamine (PDA) by spectroscopic and microscopic imaging techniques as well as dynamic light scattering methods. The study reveals that interaction of lipid vesicles with C-dots is highly dependent on the properties of the isomeric precursors. We find that vesicles retain their morphology upon interaction with ortho C-dots (oCD). The microscopic images reveal that oCD are selectively embedded in the lipid vesicles and can effectively be used for imaging purpose. On the contrary, meta and para C-dots (mCD and pCD) being located on the interfacial region induce aggregation in the vesicles. We explain the observation in terms of the location of the C-dots on the lipid vesicles, their electrostatic attraction at the vesicle interface, possible cross-linking with other vesicles and different hydration features of the isomeric precursors of the C-dots. The study may be helpful in understanding the interactions and attachment processes of C-dots at the interface of biological membranes.

13.
Phys Chem Chem Phys ; 22(6): 3234-3244, 2020 Feb 14.
Article En | MEDLINE | ID: mdl-31994545

In the present contribution, we investigate the interactions of lipid bilayer membranes of different charges and different phase states with aliphatic amino acids of varying charge (aspartic acid, glutamic acid, arginine and lysine) and hydrophobicity (serine, leucine and valine) by steady state and time-resolved spectroscopic techniques, dynamic light scattering (DLS) measurements and confocal imaging (CLSM). The study reveals that negatively charged amino acids such as aspartic acid and glutamic acid interact strongly with the lipid membranes particularly with negatively charged lipid membranes by stabilizing their gel phase. On the other hand, positively charged amino acids bring in hydration in the membranes. We explain this unique observation by the shift in pKa of amino acids in the vicinity of the lipid membranes and solvation and desolvation processes in the light of recent computer simulations. We also find that hydrogen bonding plays a significant role in governing the interaction of aliphatic amino acids with zwitterionic lipid membranes. The more polar serine bearing a hydroxyl group at the terminal carbon offers a stronger interaction with the lipid bilayer membranes as compared to its analogues leucine and valine, which are hydrophobic in nature.


Amino Acids/chemistry , Lipid Bilayers/chemistry , Computer Simulation , Dehydration , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Ions/chemistry , Kinetics , Models, Molecular , Molecular Structure , Structure-Activity Relationship
14.
Chem Commun (Camb) ; 55(100): 15109-15112, 2019 Dec 28.
Article En | MEDLINE | ID: mdl-31782428

The spontaneous formation of amyloid structures of proteins is responsible for several major human neurodegenerative diseases. Here, we demonstrate that the formation of amyloid aggregates of the amino acids results in the formation of supported phospholipid membrane and aggregated vesicles via fusion and self-reproduction of the lipid vesicles. Importantly, during the vesicle growth, we found the formation of large "mother vesicles" containing small "daughter vesicles". This observation is significant for interpreting the protein-membrane interaction and mimicking the origin of cellular life.


Amino Acids, Aromatic/chemistry , Liposomes/chemistry , Amyloid/chemistry , Amyloid/metabolism , Dipeptides/chemistry , Microscopy, Confocal , Phospholipids/chemistry , Time-Lapse Imaging
15.
Langmuir ; 35(19): 6429-6440, 2019 05 14.
Article En | MEDLINE | ID: mdl-30983360

In this contribution, we report the interaction of 1,2-dimyristoyl- sn-glycero-3-phosphocholine (DMPC) lipid vesicles with a series of trivalent metal ions of the same group, namely, Al3+, Ga3+, and In3+, to get a distinct view of the effect of size, effective charge, and hydration free energy of these metal ions on lipid vesicles. We employed steady-state and time-resolved spectroscopic techniques including time-resolved anisotropy measurement, confocal imaging, and dynamic light scattering (DLS) measurement to probe the interaction. Our study reveals that all of the three trivalent metal ions induce gelation in lipid vesicles by removing water molecules from the interfacial region. The extent of gelation induced by the metal ions follows the order of In3+ > Ga3+ ≥ Al3+. We explain this observation in light of different free-energy terms. Notably, the degree of interaction for trivalent metal ions is higher as compared to that for divalent metal ions at physiological pH (pH ∼ 7.0). Most importantly, we observe that unlike divalent metal ions, trivalent metal ions dehydrate the lipid vesicles even at lower pH. The DLS measurement and confocal imaging indicate that In3+ causes significant aggregation or fusion of the PC vesicles, while Al3+ and Ga3+ did not induce any aggregation at the experimental concentration. We employ Derjaguin-Landau-Vervey-Overbeek (DLVO) theory to explain the aggregation phenomena induced by In3+.

16.
Langmuir ; 35(4): 1008-1020, 2019 01 29.
Article En | MEDLINE | ID: mdl-30601000

We herein investigate the interactions of differently functionalized anionic and cationic gold nanoparticles (AuNPs) with zwitterionic phosphocholine (PC) as well as inverse phosphocholine (iPC) lipid bilayers via spectroscopic measures. In this study, we used PC lipids with varying phase-transition temperatures, i.e., DMPC ( Tm = 24 °C), DOPC ( Tm = -20 °C), and iPC lipid DOCP ( Tm = -20 °C) to study their interactions with AuNPs functionalized with anionic ligands citrate, 3-mercaptopropionic acid, glutathione, and cationic ligand cysteamine. We studied the interactions by steady-state and time-resolved spectroscopic studies using membrane-sensitive probes 6-propionyl-2-dimethylaminonaphthalene (PRODAN) and 8-anilino-1 naphthalenesulfonate (ANS), as well as by confocal laser scanning microscopy (CLSM) imaging and dynamic light scattering (DLS) measurements. We observe that AuNPs bring in stability to the lipid vesicle, and the extent of interaction differs with the different surface ligands on the AuNPs. We observe that AuNPs functionalized with citrate effectively increase the phase-transition temperature of the vesicles by interacting with them. Our study reveals that the extent of interaction depends on the bulkiness of the ligands attached to the AuNPs. The bulkier ligands exert less van der Waals force, resulting in a weaker interaction. Moreover, we find that the interactions are more strongly pronounced when the vesicles are near the phase-transition temperature of the lipid.  The CLSM imaging and DLS measurements demonstrate the surface modifications in the vesicles as a result of these interactions.

17.
Phys Chem Chem Phys ; 20(21): 14796-14807, 2018 May 30.
Article En | MEDLINE | ID: mdl-29781031

In this manuscript, we investigate the interactions of different metal ions with zwitterionic phospholipid bilayers of different chain lengths using the well-known membrane probe PRODAN and steady state and time resolved fluorescence spectroscopy. We used three zwitterionic lipids that are widely different in their phase transition temperature, namely, dipalmitoylphosphatidylcholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphocholine (POPC) and salts of zinc (Zn), calcium (Ca) and magnesium (Mg). The steady state and time resolved studies reveal that the affinity of the metal ions follows the order Zn2+ > Ca2+ > Mg2+. The study further reveals that the lipid membrane with an unsaturated chain exhibits very small affinity towards metal ions. We find that the Zn2+ and Ca2+ metal ions induce significant gelation in the lipid bilayer possibly by dehydrating the lipid bilayer surface. The study also demonstrates that unlike Zn2+ and Ca2+, dehydration does not take place for Mg2+. The extreme hydration induced by Mg2+ is rationalized by the tight hydration of Mg2+ and very high free energy barrier of Mg2+ to bind with lipid oxygen as compared to that of water molecules.

18.
J Pharm Sci ; 107(1): 103-112, 2018 01.
Article En | MEDLINE | ID: mdl-28549906

The present study investigates the use of free drug sensors (FDS) to measure free ionized drug concentrations in colloidal systems, including micellar solutions, emulsions, and lipid formulations during in vitro lipolysis. Diphenhydramine hydrochloride (DPH) and loperamide hydrochloride (LOP) were selected as model drugs. Self-diffusion nuclear magnetic resonance studies were performed and confirmed the entrapment of drugs in micelles in Brij 35 and sodium taurodeoxycholate (TDC)/phosphatidylcholine (PC) micellar solutions. The FDS measurements indicated that with a constant level of drug, the percentage of free DPH and LOP decreased from 84% to 57% and from 51% to 18%, respectively, as the concentration of Brij 35 was increased from 4.7 to 22 mM; and from 99% to 46% and from 100% to 21%, respectively, as the concentration of TDC/PC was increased from 0.49/0.04 to 8.85/0.78 mM. During the in vitro lipolysis of a lipid formulation, free drug concentration decreased with lipolysis time. The percentage of free DPH was higher than for LOP in the same colloidal system because DPH is less lipophilic than LOP. The study showed that FDS can be used to monitor the free drug concentration in colloidal systems with fast response, no sample treatment and simple data analysis.


Pharmaceutical Preparations/chemistry , Chemistry, Pharmaceutical , Drug Delivery Systems/methods , Emulsions/chemistry , Lipids/chemistry , Lipolysis/drug effects , Micelles , Polyethylene Glycols/chemistry , Potentiometry/methods , Solubility/drug effects , Surface-Active Agents/chemistry
19.
J Phys Chem B ; 121(50): 11333-11343, 2017 12 21.
Article En | MEDLINE | ID: mdl-29148780

In this article, we investigate the interactions of carboxyl-modified gold nanoparticles (AuC) with zwitterionic phospholipid liposomes of different chain lengths using a well-known membrane probe PRODAN by steady-state and time-resolved spectroscopy. We use three zwitterionic lipids, namely, dipalmitoylphosphatidylcholine (DPPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), and 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), which are widely different in their phase transition temperatures to form liposome-AuC assemblies. The steady-state and time-resolved studies indicate that the AuC brings in stability toward liposomes by local gelation. We observe that the bound AuC detach from the surface of the liposomes under pH ≈ 5 due to protonation of the carboxyl group, thus eliminating the electrostatic interaction between nanoparticles and head groups of liposomes. The detachment rate of AuC from the liposome-AuC assemblies is different for the aforementioned liposomes due to differences in their fluidity. We exploited the phenomena for the controlled release of a prominent anticancer drug Doxorubicin (DOX) under acidic conditions for different zwitterionic liposomes. The drug release rate was further optimized by coating of liposome-AuC assemblies with oppositely charged polymer (P), polydiallyldimethylammonium chloride, followed by a mixture of lipids L (DMPC:DMPG) and again with a polymer in a layer-by-layer fashion to obtain capsule-like structures. This system is highly stable for weeks, as confirmed by field-emission scanning electron microscopy (FE-SEM) and confocal laser scanning microscopy (CLSM) imaging, and inhibits premature release. The layer coating was confirmed by hydrodynamic size and zeta potential measurements of the systems. The capsules obtained are of immense importance as they can control release of the drug from the systems to a large extent.


Antibiotics, Antineoplastic/chemistry , Doxorubicin/chemistry , Drug Liberation , Gold/chemistry , Liposomes/chemistry , Metal Nanoparticles/chemistry , Microscopy, Confocal , Microscopy, Electron, Scanning
20.
J Phys Chem B ; 121(8): 1854-1865, 2017 03 02.
Article En | MEDLINE | ID: mdl-28145715

In this article, we investigate the influence of different metal ions (Ca2+, Mg2+, and Zn2+) on binding of an anticancer drug doxorubicin (DOX) to DMPC bilayer and lipoplex mediated deintercalation of DOX from DOX-DNA complex. Our study reveals that lipid bilayer in the presence of different metal ions displays much higher binding affinity toward DOX than bare lipid bilayer does. Further, this affinity for a particular metal ion increases linearly with metal ion concentration. The steady state and time-resolved fluorescence studies reveal that binding of DOX with lipid bilayer in the presence of different metal ions varies in the order of Ca2+> Mg2+> Zn2+. The rotational relaxation of DOX in the presence of different metal ions takes place in the same order. We explain these phenomena in the light of alteration of the physical properties brought about by metal ions. Moreover, we find that binding pattern of metal ions with lipid head groups influences the intake of DOX in lipid bilayer. We exploit the binding of DOX with bilayer to study the deintercalation of DOX from DOX-DNA complex. We observe that with increase in metal ion concentration the deintercalation increases. Among all metal ions, Ca2+ appears to be most effective in deintercalation compared to other metal ions. The time-resolved fluorescence anisotropy and circular dichroism measurements indicate that in the presence of Ca2+, lipid bilayer offer strongest interaction with DNA while the same is weakest for Zn2+. This explains the highest percentage of deintercalation of DOX from drug-DNA complex in the presence of Ca2+. Overall the present study demonstrates a new strategy that binding of drug molecules with lipid bilayer and deintercalation of the same from drug-DNA complex can be tuned by modulation of lipid bilayer with different metal ions and their concentration.


Antibiotics, Antineoplastic/chemistry , DNA Adducts/chemistry , Dimyristoylphosphatidylcholine/chemistry , Doxorubicin/chemistry , Lipid Bilayers/chemistry , Liposomes/chemistry , Animals , Antibiotics, Antineoplastic/administration & dosage , Binding Sites , Calcium/chemistry , Cations, Divalent/chemistry , Cattle , DNA Adducts/administration & dosage , Doxorubicin/administration & dosage , Drug Liberation
...